In-Situ Monitoring by Mass Spectrometry for GaAs Etched with An Electron Cyclotron Resonance Source

1993 ◽  
Vol 324 ◽  
Author(s):  
D. J. Kahaian ◽  
S. W. Pang

AbstractQuadrupole mass spectrometry (QMS) has been used as an in-situ diagnostic technique for GaAs etched with an electron cyclotron resonance source. Changes in the detected signal intensities for reactive species and etch products have been related to corresponding changes in the etch rate as several process parameters were varied. The detected 75As+ and to a lesser degree, 35C1+ and 70C12+, were observed to follow etch rate as microwave power, rf power, source to sample distance, temperature, and pressure were varied. The self-induced dc bias (IVdcl) determines the etch rate dependence on etch time. The time delay before saturation of the monitored 75As+ signal corresponding to a constant etch rate is inversely proportional to IVdcl. The addition of N2/O2 in a 4:1 ratio to constitute 15% of the total discharge resulted in a 95% decrease in the intensity of the monitored 75As+ signal. The measured etch rate decreased by 75%.

1994 ◽  
Vol 349 ◽  
Author(s):  
N.J. Ianno ◽  
S. Ahmer ◽  
S. Pittal ◽  
John A. Woollam

ABSTRACTThe electron cyclotron resonance (ECR) etching of diamond-like carbon films in an oxygen plasma has been studied. The input variables were flow rate, pressure, power, and bias, while the output parameters were etch rate, and uniformity. In-situ ellipsometry, performed at 44 wavelengths simultaneously, was employed to monitor the etch process in real time. We will show that DLC films can be etched without an applied bias, but the application of an rf induced dc bias greatly enhances etch uniformity. Further, the etch rate is a strong function of the bandgap of the DLC film.


1995 ◽  
Vol 406 ◽  
Author(s):  
S. Thomas ◽  
E. W. Berg ◽  
S. W. Pang

AbstractThe increase in wafer temperature due to plasma heating during etching has been studied. Si and InP were etched using a high ion density discharge generated by an electron cyclotron resonance source. The wafer temperature was measured in-situ using fiberoptic thermometry as microwave power, rf power, chamber pressure, and gas flow were varied. Wafer temperatures increased with both microwave and rf power, and decreased with chamber pressure. For rf power of 50 W, chamber pressure of 1 mTorr, a source distance of 13 cm, and 10 sccm Ar flow, an increase in microwave power from 50 to 500 W caused the temperature to increase from 62 to 186 °C. Additionally, the use of He flowing at the backside of the wafer for temperature control was analyzed. By setting the backside He pressure at 3 Torr, the temperature increased from 20 °C at the beginning of the etch to only 29 °C after 12 min. Time dependent etch characteristics of InP were studied and related to the wafer temperature measurements. At 100 W microwave power, the InP etch rate increased from 100 to 400 nm/min as the wafer temperature rose from 20 to 150 °C. As the temperature increased above 150 °C, the profile became more undercut and the surface morphology improved. By setting the stage temperature to -100 °C and using 3 Torr He pressure at the backside of the wafer, the InP etch rate remained constant during etching and undercutting was suppressed. For 500 W microwave power, a fast InP etch rate of 2 μm/min was obtained when the wafer temperature was <110 °C, and it increased to over 4 μm/min when the temperature was >150 °C.


1995 ◽  
Vol 395 ◽  
Author(s):  
L. Zhang ◽  
J. Ramer ◽  
J. Brown ◽  
K. Zheng ◽  
L.F. Lester ◽  
...  

ABSTRACTElectron cyclotron resonance (ECR) plasma etching characteristics of gallium nitride (GaN) are investigated using low pressure (4-10 mTorr) SiCl4/Ar and Cl2/H2/Ar ECR discharges. The purpose of this effort is to develop a dry etching process for making laser mirrors on GaN and to examine dry etching processes of GaN that do not require hydrogen, which is known to cause carrier compensation in GaN. The etch rate is found to increase near-linearly with increasing DC bias, and a minimum DC bias of 100V is required to initiate etching in SiCl4/Ar. We have also found that the material quality significantly affects the etch rate. The latter decreases with x-ray rocking curve half-width and increases with defect density. A reasonable etch rate of 660Ǻ/min and good surface morphologies obtained in SiCl/Ar ECR etching make this process suitable for gate recess of an FET. An etch rate of 5270Ǻ/min has been achieved in Cl2/H2/Ar plasmas. This is the highest reported etch rate of GaN so far. The smooth and vertical etch sidewalls (etch to mask selectivity of 16 is obtained) make this process promising for dry-etched laser mirrors on GaN.


1995 ◽  
Vol 66 (11) ◽  
pp. 5252-5256 ◽  
Author(s):  
Patrick O’Keeffe ◽  
C. O’Morain ◽  
S. Den ◽  
Y. Hayashi ◽  
S. Komuro ◽  
...  

1991 ◽  
Vol 235 ◽  
Author(s):  
K. T. Sung ◽  
S. W. Pang

ABSTRACTSilicon was oxidized at low temperature with an oxygen plasma generated by an electron cyclotron resonance (ECR) source. The ECR source utilized a multicusp magnetic field formed by permanent magnets. Microwave power at 2.45 GHz was applied to the source and if power at 13.56 MHz was applied to the sample stage. Si oxidation was studied as a function of source distance, pressure, microwave power, and rf power. The oxide thickness increases with microwave and rf power but decreases with source distance. The oxidation rate increases with pressure up to 12 mTorr, men decreases at higher pressure. The relative emission intensities in the plasma monitored using optical emission spectroscopy showed similar dependence on the source distance and microwave power. Oxidation temperature was estimated to be <100°C. Using ellipsometry and X-ray photoelectron spectroscopy, the oxidized films were found to be close to that of thermal oxide with refractive index at 1.45 and oxygen to silicon ratio of 2. From the current-voltage and capacitance-voltage measurements, the breakdown fields of these oxide films were 6.3 MV/cm and the fixed charge densities were 7×1010 cm−2.


1997 ◽  
Vol 241-243 ◽  
pp. 1217-1221 ◽  
Author(s):  
H. Kokura ◽  
K. Sasaki ◽  
H. Toyoda ◽  
T. Mizuuchi ◽  
K. Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document