scholarly journals Waste Glass Corrosion Modeling: Comparison with Experimental Results

1993 ◽  
Vol 333 ◽  
Author(s):  
William. L. Bourcier

ABSTRACTModels for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations.

1991 ◽  
Vol 257 ◽  
Author(s):  
K. Lemmens ◽  
P. Van Iseghem

ABSTRACTThe Al2O3 rich borosilicate glass SM527 was submitted to corrosion tests with glass surface area to solution volume ratios ranging from 10 to 10000 m-1. This latter condition would correspond with a 1000 fold acceleration relative to the reference MCCI condition. Powdered glass was used to reach SANV ratios of 500 m-1 and more. The leaching solutions were either distilled water or referred to Boom clay disposal conditions. The results based on the boron concentration in solution revealed a relatively linear dependence on SA/V.t0.5 in the pure solutions, on the longer term (DW and clay water). Diffusion is suggested to be the process governing the glass dissolution, although other processes should not be excluded. In a clay / clay water mixture (slurry), long term dissolution seems to be limited by saturation. Short term data for boron are largest in the clay slurry, but with time the boron concentrations converge to similar values in the three media considered. The use of SA/V as an accelerating factor is promising, but certainly requires additional research.


1989 ◽  
Vol 176 ◽  
Author(s):  
William L. Bourcier ◽  
Dennis W. Peiffer ◽  
Kevin G. Knauss ◽  
Kevin D. McKeegan ◽  
David K. Smith

ABSTRACTA kinetic model for the dissolution of borosilicate glass, incorporated into the EQ3/6 geochemical modeling code, is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkalidepleted amorphous surface (gel) layer. Assuming that the gel layer dissolution affinity controls glass dissolution rates is similar to the silica saturation concept of Grambow [1] except that our model predicts that all components concentrated in the surface layer, not just silica, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations.


2002 ◽  
Vol 90 (9-11) ◽  
Author(s):  
P. Zimmer ◽  
E. Bohnert ◽  
Dirk Bosbach ◽  
Jae-Il Kim ◽  
E. Althaus

SummaryThe behavior of rare earth elements (REE) as chemical analogues for actinides during glass corrosion was studied with static long-term batch experiments (7.5 years) at 190 °C. Corrosion tests were carried out using a simulated inactive high level waste (HLW) glass powder. Two different highly concentrated salt solutions (NaCl-rich and MgCl


2000 ◽  
Vol 663 ◽  
Author(s):  
M.I. Ojovan ◽  
N.V. Ojovan ◽  
I.V. Startceva ◽  
G.N. Chuikova ◽  
A.S. Barinov

ABSTRACTA model developed for description of waste glass corrosion has been applied to assess the radionuclide release from real radioactive (intermediate level) vitrified material over extended storage periods. Field data generated during the long-term testing of the prototype waste glass packages were mathematically processed and the derived parameters used in model calculations. Regardless of the corrosive saturated conditions of the wet near-surface repository, the fairly high safety of trench disposal has been demonstrated for borosilicate glass containing real NPP- operational waste.


1990 ◽  
Vol 212 ◽  
Author(s):  
William L. Ebert ◽  
John K. Bates

ABSTRACTThe analytical expression used to model glass reaction in computer simulations such as EQ6 is compared to the results of experiments used to support the simulations. The expression correctly predicts the acceleration observed in experiments performed at high glass surface area/1eachant volume ratios (SA/V) upon the formation of secondary phases. High resolution microscopic analysis of reacted glass samples suggests that the accelerated nature of the reaction after secondary phase formation is due to changes in the reaction affinity (i.e., is a solution effect) and not a change in the glass reaction mechanism. The composition of solutions in contact with reacted samples reflect the effects of the secondary phases predicted in the model. Experiments which lead to the generation of secondary phases within short reaction times can be used to identify important secondary phases which must be Included in the data base of computer simulations to correctly project long-term glass reaction behavior.


2021 ◽  
Vol 1 ◽  
pp. 143-144
Author(s):  
Felix Brandt ◽  
Martina Klinkenberg ◽  
Sébastien Caes ◽  
Jenna Poonoosamy ◽  
Wouter Van Renterghem ◽  
...  

Abstract. Immobilization of high-level and intermediate-level nuclear wastes by vitrification in borosilicate glass is a well-established process. There is a consensus between the waste management agencies of many countries and many experts that vitrified nuclear waste should be disposed of in a deep geological waste repository and therefore its long-term behavior needs to be taken into account in safety assessments. In contact with water, borosilicate glass is metastable and dissolves. In static dissolution experiments, often a surface alteration layer (SAL) forms on the dissolving glass, and later sometimes secondary phases form. Based on boron or lithium release rates, commonly three stages of glass dissolution are defined as a function of the reaction progress: (I) initial dissolution, described by a congruent glass dissolution at the highest rate, (II) residual dissolution, characterized by a glass dissolution rate several orders of magnitude lower than the initial one, and (III) resumption of glass alteration with initial rates. Microscopically, the formation of a complex SAL has been identified as a prerequisite for the slower dissolution kinetics of stage II. Stage III is typically observed under specific conditions, i.e., high temperature and/or high pH driven by the uptake of Si and Al into secondary phases. Different glass dissolution models explaining the mechanisms of the SAL formation and rate-limiting steps have been proposed and are still under debate. In this article different aspects of glass dissolution from recent studies in the literature and our own work are discussed with a focus on the microscopic aspects of SAL formation, secondary phase formation and the resumption of glass dissolution. Most of the experiments in the literature were performed under near-neutral pH conditions and at 90 ∘C, following standard procedures, to understand the fundamental mechanisms of glass dissolution. The example of interaction of glass and cementitious materials as discussed here is relevant for safety assessments because most international concepts include cement e.g., as lining, for plugs, or as part of the general construction of the repository. The aim of the investigations presented in this paper was to study the combined effect of hyperalkaline conditions and very high surface area/volume ratios (SA/V=264000m-1) on the dissolution of international simplified glass (ISG) and the formation of secondary phases at 70 ∘C in a synthetic young cement water containing Ca (YCWCa). The new results show that the SA/V ratio is a key parameter for the dissolution rate and for the formation of the altered glass surface and secondary phases. A comparison with similar studies in the literature shows that especially on the microscopic and nanoscale, different SA/V ratios lead to different features on the dissolving glass surface, even though the SA-normalized element release rates appear similar. Zeolite and Ca-silicate-hydrate phases (CSH) were identified and play a key role for the evolution of the solution chemistry. A kinetic dissolution model coupled with precipitation of secondary phases can be applied to relate the amount of dissolved glass to the evolution of the solution's pH.


2006 ◽  
Vol 932 ◽  
Author(s):  
Berthold Luckscheiter ◽  
Maria Nesovic

ABSTRACTTo determine the maximum attainable solution concentrations of U, Th and fission products during long-term glass corrosion, co-precipitation studies were performed. The HLW-glass GPWAK 1 was dissolved in highly acid and basic media (100 g glass/L) at 80°C and by preparing acid solutions containing the various elements in soluble form. After dissolution the pH of the solution was slowly lowered/increased and the high concentrated solutions become super-saturated and strong precipitation takes place. The found pH-dependent concentrations of the various elements reflect their different solubility, lowest concentration for Th, Zr and Fe and highest for B, alkalis and alkaline earths. To find out the solid phases controlling the solution concentration, the run of the concentrations of some elements is compared with the solubility data of their pure solid phases (e.g. hydroxides) from literature. It was found that the concentrations of Nd, Th and U in dependence on pH agree quite well with solubility data of AmOHCO3, ThO2/Th(OH)4 and Schoepite UO2·(OH)2) ·H2O. Therefore, it can be assumed that the maximum attainable concentrations of many elements are controlled by such pure solid phases.


1989 ◽  
Vol 176 ◽  
Author(s):  
J. Caurel ◽  
E. Vemaz ◽  
D. Beaufort

ABSTRACTThe results of hydrothermal leach tests are intended to be used to predict long-term low-temperature glass dissolution. It is often assumed that data can be extrapolated to other conditions using an Arrhenius-type equation. Hydrothermal leaching mechanisms and their temperature dependence in R7T7 glass were investigated in static experiments lasting from 7 days to 1 year at 150°C and 250°C. Leachates, surface layers and crystalline products were analyzed by ICP, TEM, SEM, EMP, XRD and cathodoluminescence. Unexpectedly, no actual saturation conditions in solutions were reached after one year leaching at 150°C nor at 250°C. The effect of precipitation of alteration products (a silica-enriched amorphous layer and aluminosilicates [smectite at 150°C, smectite and zeolites at 250°C]) is discussed. However, the formation of large cracks in the bulk glass results in a higher glass reacting surface and a higher dissolution rate at 250°C. Arrhenius calculations cannot be used to extrapolate our hydrothermal data to lower-temperatures.


1982 ◽  
Vol 15 ◽  
Author(s):  
Richard M. Wallace ◽  
George G. Wicks

Studies of the leachability of waste glass have been in progress at Savannah River Laboratory (SRL) for several years. The principal objective of these studies has been to predict the long-term behavior of Savannah River Plant waste glass when stored in a repository. Such predictions can be made from the results of short-term tests only if the mechanisms of waste glass corrosion are understood. Determining the mechanisms of corrosion and developing a predictive model have therefore been a major thrust of our work.


2021 ◽  
pp. 056943452098827
Author(s):  
Tanweer Akram

Keynes argued that the central bank can influence the long-term interest rate on government bonds and the shape of the yield curve mainly through the short-term interest rate. Several recent empirical studies that examine the dynamics of government bond yields not only substantiate Keynes’s view that the long-term interest rate responds markedly to the short-term interest rate but also have relevance for macroeconomic theory and policy. This article relates Keynes’s discussions of money, the state theory of money, financial markets, investors’ expectations, uncertainty, and liquidity preference to the dynamics of government bond yields for countries with monetary sovereignty. Investors’ psychology, herding behavior in financial markets, and uncertainty about the future reinforce the effects of the short-term interest rate and the central bank’s monetary policy actions on the long-term interest rate. JEL classifications: E12; E40; E43; E50; E58; E60; F30; G10; G12; H62; H63


Sign in / Sign up

Export Citation Format

Share Document