Gas-Phase and Surface Decomposition of Tris-Dimethylamino Arsenic

1993 ◽  
Vol 334 ◽  
Author(s):  
Ming Xi ◽  
Sateria Salim ◽  
Klavs F. Jensen ◽  
David A. Bohling

AbstractGas phase and surface decomposition reactions of a novel arsenic precursor tris- (dimethylamino) arsenic (DMAAs) have been studied. Optical fiber-based Fourier transform infrared spectroscopy was used to monitor, in situ, the gas-phase pyrolysis of DMAAs. Homolysis of the arsenic-nitrogen bond with formation of dimethylamine radicals was identified as the key gas-phase reaction pathway. Formation of methylmethyleneimine from reactions with the decomposition products was directly observed. Surface decomposition of DMAAs on GaAs(100) was investigated by low energy electron diffraction and temperature-programmed reaction under ultra-high vacuum conditions. DMAAs adsorbed onto GaAs(100)-(4x6) was found to decompose with 100% efficiency and two surface reaction pathways were identified. The first reaction channel was homolysis of the arsenic-nitrogen bond with formation of dimethylamine radicals, whereas the second pathway involved a β-hydrogen transfer.

1993 ◽  
Vol 334 ◽  
Author(s):  
Wen-Shryang Liu ◽  
Gregory B. Aupp

AbstractTemperature programmed desorption (TPD) studies in ultra high vacuum revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe. Dimethylcadmium partially decomposes to produce Cd adatoms; a large fraction of the excess Cd atoms desorb upon heating. In contrast, DETe desorbs without decomposing, suggesting that the rate limiting step in CdTe MOCVD on CdTe(111)A is surface decomposition of the tellurium alkyl.


2020 ◽  
Vol 22 (9) ◽  
pp. 5057-5069 ◽  
Author(s):  
Jae-ung Lee ◽  
Yeonjoon Kim ◽  
Woo Youn Kim ◽  
Han Bin Oh

A new approach for elucidating gas-phase fragmentation mechanisms is proposed: graph theory-based reaction pathway searches (ACE-Reaction program) and density functional theory (DFT) calculations.


2017 ◽  
Vol 608 ◽  
pp. A50 ◽  
Author(s):  
M. Bertin ◽  
M. Doronin ◽  
X. Michaut ◽  
L. Philippe ◽  
A. Markovits ◽  
...  

Context. Almost 20% of the ~200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims. In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods. The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results. The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.


1986 ◽  
Vol 75 ◽  
Author(s):  
J. R. Swanson ◽  
C. M. Friend ◽  
Y. J. Chabal

AbstractLaser- and electron-assisted deposition of Fe on Si(111)-(7×7) surfaces using decomposition of Fe(CO)5 has been investigated with multiple internal reflection Fourier transform infrared, Auger electron and temperature programmed desorption spectroscopies and low energy electron diffraction under ultra-high vacuum conditions. No thermal reaction was apparent in temperature programmed desorption experiments: only molecular Fe(CO)5 desorption was observed at temperatures of 150 and 170 K, corresponding to desorption energies in the range of 7–10 kcal./mole. Fe(CO)5 decomposition could be induced using either incident 1.6 keV electrons or ultraviolet photons. Significant amounts of carbon were deposited from the electron induced decomposition, consistent with earlier reports on the Si(100) surface. In contrast, ultraviolet photolysis did not result in any detectable incorporation of carbon or oxygen into the iron deposits. No partially decarbonylated Fe(CO)x, x<5, fragments were detected subsequent to exposure to photons using infrared spectroscopy. However, a new, unresolved low frequency shoulder did appear in the infrared spectrum after exposing the Fe(CO)5 covered Si(111)-(7×7) crystal to the electron beam. Iron photodeposition was evident in the Auger electron spectra obtained subsequent to photolysis and annealing of the surface to either 300 K or 1000 K in order to desorb unreacted Fe(CO)5. These data suggest that there are no surface stable Fe(CO)x, x<5, species in the photodeposition process. Instead, photolysis yields Fe atoms directly, even at low temperatures. Annealing to temperatures on the order of 1000 K subsequent to iron deposition resulted in a significant decrease in the Fe:Si ratio as measured by Auger electron spectroscopy. In addition, CO could not be readsorbed on a surface where the Fe(CO)5 had been decomposed. This is attributed to dissolution of Fe into the bulk silicon crystal.


Hydrogen absorption to give the dihydrides MH 2+1 containing interstitial hydrogen H i has been studied for the metals Gd, Dy, Er, Yb and Lu in the form of films deposited in ultra-high vacuum on glass. Film areas were determined by Kr adsorption, and hydrogen content, in particular inter­stitial hydrogen H i , characterized by gas uptake, temperature programmed desorption, electrical conductivity and work function measurements by the diode method. The catalytic activity of the dihydride films for the H 2 + D 2 → 2HD reaction was studied at a pressure of 1.1 Torr over 175-579 K, and at 273 K over 0.19-6.2 Torr. Arrhenius plots for the rate con­stant show a low temperature low activation energy region changing over at a temperature T c to a higher temperature higher activation energy régime, with T c on average for the five metals about 50 K below the tem­perature T max at which the interstitial hydrogen H i has disappeared. The suggested mechanisms are T < T c : D 2 + H i □ s → (D 2 H i )□ s → □ s D i + HD, (1) T > T c : D 2 + H 2 + 4□ s → 2(D i □ s ) (H i □ s ) → 4□ s + 2HD, (2) where H i □ s , D i □ s , denotes a hydrogen, deuterium, atom held on a surface octahedral site in the f. c. c. metal sublattice. These mechanisms agree with the observed approximate first-order pressure dependency down to 77 K. The rate constants at both 273 K (under T c ) and 573 K (over T c ) decrease over Gd, Dy, Er, to Yb, and rise again to Lu, and this is discussed in terms of the metal-hydrogen, H i □ s or D i □ s bond strength.


2014 ◽  
Vol 16 (19) ◽  
pp. 8911-8920 ◽  
Author(s):  
Vladimir Frankevich ◽  
Vitaliy Chagovets ◽  
Fanny Widjaja ◽  
Konstantin Barylyuk ◽  
Zhiyi Yang ◽  
...  

Author(s):  
S. Balgooyen ◽  
I. Waluyo

Oxidation of ammonia was used to prepare a p(2 x 2) nitrogen layer on the Ru(0001) surface as verified by temperature-programmed desorption (TPD) and low energy electron diffraction (LEED). The process takes place in an ultra-high vacuum (UHV) chamber. The surface is precovered with oxygen and then exposed to ammonia at low temperature. Upon heating, the ammonia is oxidized to form water, which desorbs at low temperature to leave a nitrogencovered surface. The resulting layer can be used in a variety of surface chemical studies, including a hydrogenation reaction, which is an important part in the study of the Haber-Bosch process, in which ruthenium is used as a catalyst.


2014 ◽  
Vol 778-780 ◽  
pp. 1170-1173 ◽  
Author(s):  
Motochika Okano ◽  
Daiki Edamoto ◽  
Kentaro Uchida ◽  
Ichiro Omura ◽  
Tomonori Ikari ◽  
...  

We investigated the effect of ion-beam irradiation of the 3C-SiC(111) surface on the growth of graphene by the SiC surface-decomposition method. When a 3C-SiC(111) surface was irradiated by 1 keV Ar+ions at a dose of 4.5 × 1015cm2in an ultra-high-vacuum chamber and then annealed at 1200 °C for 1 min, the formation of graphene layers was promoted in comparison with that in the absence of ion-beam irradiation. X-ray photoelectron spectroscopy studies showed that Ar ion bombardment of the 3C-SiC(111) caused breakage of surface bonds and helped Si atoms to desorb from the surface.


2018 ◽  
Vol 612 ◽  
pp. A88 ◽  
Author(s):  
N. F. W. Ligterink ◽  
C. Walsh ◽  
R. G. Bhuin ◽  
S. Vissapragada ◽  
J. Terwisscha van Scheltinga ◽  
...  

Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims. The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods. Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results. Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10−7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10−6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.


Sign in / Sign up

Export Citation Format

Share Document