Enhancement of Gold on n-InGaAs Schottky Barrier Height by Using a thin p-InP Layer

1994 ◽  
Vol 340 ◽  
Author(s):  
Bing Yang ◽  
J. C. Chen ◽  
F. S. Choa

ABSTRACTIn this study, we demonstrate the enhancement of n-In0.53Ga0.47A s Schottky barrier height by using a thin (300-1800 Å) p-InP surface layer. An increase in the barrier height of 0.46 eV, making the total barrier height 0.66 eV, was obtained in a Au/p-InP/n-InGaAs structure, resulting in a great reduction of leakage currents. Results of the electrical measurements are summarized in table 1. The barrier height of n- In0.53Ga0.47As was increased from 0.2 eV to 0.66 eV when a 1200-Å-thick p-InP surface layer was employed.

2010 ◽  
Vol 645-648 ◽  
pp. 893-896 ◽  
Author(s):  
Akimasa Kinoshita ◽  
Takasumi Ohyanagi ◽  
Tsutomu Yatsuo ◽  
Kenji Fukuda ◽  
Hajime Okumura ◽  
...  

It is known that a Schottky barrier height (b) of metal/C-face 4H-SiC Schottky barrier diode (SBD) differ from b of metal/Si-face 4H-SiC SBD. Furthermore, b of metal/4H-SiC SBD varies with annealing temperature. We fabricate 0.231mm2 SBD with Ti/SiC interface using Si-face and C-face 4H-SiC. These SBDs are annealed at several temperatures after a formation of the Ti/SiC interface. As a result, b of Ti/C-face 4H-SiC interface annealed at 400 oC is nearly equal to b of Ti/Si-face 4H-SiC interface annealed at 500 oC and the n-values of these SBDs are nearly equal to the ideal value (unity). Using that annealing condition, we fabricated 25mm2 junction barrier Schottky (JBS) diodes with Ti/SiC interface on Si-face and C-face 4H-SiC epitaxial substrate. b of Si-face and C-face JBS diodes are 1.26eV and 1.24eV, respectively. The leakage currents for both Si-face and C-face JBS diodes are less than 1mA/cm2. The current of 100A is obtained at the forward bias voltage of 1.95V and 2.16V for the Si-face JBS and the C-face JBS.


1993 ◽  
Vol 300 ◽  
Author(s):  
R. Pereira ◽  
M. Van Hove ◽  
W. De Raedt ◽  
J. Alay ◽  
H. Bender ◽  
...  

The damage introduced by CH4/H2 reactive ion etching (RIE) on Si-doped AlGaAs layers is studied by X-Ray Photoelectron Spectroscopy (XPS), Auger electron spectrocopy (AES) and electrical measurements on Schottky contacts. The XPS analysis of the surface stoichiometry after RIE exposure shows arsenic depletion and adsorbed carbon as the main characteristics. The carbon spectrum consists of a component due to atmospheric contamination and an additional photoelectron peak at 283 eV, which we correlate with the formation of Ga-C radicals at the AlGaAs surface during RIE. The reaction process at the Au/TiW/Ti/AlGaAs interface after RIE exposure and subsequent thermal annealing is monitored by AES. Also by this technique, carbon was detected at the Ti/AlGaAs interface and no interdiffusion was observed. The electrical behaviour of the contacts is characterized by capacitance-voltage (CV) and current-voltage (IV) measurements. Schottky barrier height, ideality factor and reverse breakdown were determined. The barrier height extracted from CV measurements of the samples exposed to RIE shows increased values (1.1 to 1.4 eV) compared to the reference samples (1.0 to 1.1 eV), depending on the aluminium concentration. The same behaviour was observed in the ideality factor. The results are explained by the formation of a p-n junction below the metal/AlGaAs barrier. Good agreement between experimental and theoretical values is found when the compensation of Si donors was taken into account.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2011 ◽  
Vol 98 (16) ◽  
pp. 162111 ◽  
Author(s):  
J. Kováč ◽  
R. Šramatý ◽  
A. Chvála ◽  
H. Sibboni ◽  
E. Morvan ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 597-599 ◽  
Author(s):  
Lin-Lin Wang ◽  
Wu Peng ◽  
Yu-Long Jiang ◽  
Bing-Zong Li

2007 ◽  
Vol 994 ◽  
Author(s):  
S. L. Liew ◽  
C. T. Chua ◽  
D. H. L Seng ◽  
D. Z. Chi

AbstractSchottky barrier height (ÖB) engineering of NiGe/n-Ge(001) diodes was achieved through germanidation induced dopant segregation on As implanted-Ge substrates. was reduced from 0.55 eV to 0.16 eV with increasing As dose on n-Ge(001) while on p-Ge(001), the diodes exhibited increasing ÖB.


Sign in / Sign up

Export Citation Format

Share Document