Synthesis of Hybrid Inorganic-Organic Sol-Gel Coatings for Optics

1994 ◽  
Vol 346 ◽  
Author(s):  
B. Lebeau ◽  
C. Guermeur ◽  
C. Sanchez

ABSTRACTThe synthesis of transparent hybrid organic-inorganic coatings obtained from condensation between alkoxysilane containing grafted dyes (azo dyes or phthalocyanines) and metal alkoxides precursors has been performed. The Red 17 azo dye, known for its high second order polarisability, was bonded to the silicon oxide network following two procedures: a silylation reaction between Red 17 and triethoxysilane; a coupling reaction between Red 17 and 3-isocyanatopropyltriethoxysilane. Silicon phthalocyanines (known for their third order polarisability and inverse saturable absorption properties) were incorporated into the silicon oxide network by a silylation reaction. Phthalocyanine doped transparent hybrid organic-inorganic coatings were obtained from condensation between diethoxymethylsilane and zirconium propoxide precursors.

2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


2015 ◽  
Vol 50 (13) ◽  
pp. 4698-4706 ◽  
Author(s):  
Maoqiao Xiang ◽  
Yingchun Zhang ◽  
Ming Hong ◽  
Shuyan Liu ◽  
Yun Zhang ◽  
...  

2010 ◽  
Vol 148-149 ◽  
pp. 893-896 ◽  
Author(s):  
Ze Yang Zhang ◽  
Xiang Xuan Liu ◽  
You Peng Wu

M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were successfully prepared by the sol-gel method and solution phase reduction method, respectively. The crystalline and morphology of particles were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The composite coatings with SrFe12O19 ferrites and FeNi3 nanoplatelets in polyvinylchloride matrix were prepared. The microwave absorption properties of these coatings were investigated in 2-18GHz frequency range. The results showed that the M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were obtained and they presented irregular sheet shapes. With the increase of the coating thickness, the absorbing peak value moves to the lower frequency. The absorbing peak values of the wave increase along with the increasing of the content of FeNi3 nanoplatelets filling fraction. When 40% SrFe12O19 ferrites is doped with 20% mass fraction FeNi3 nanoplatelets to prepare composite with 1.5mm thickness, the maximum reflection loss is -24.8 dB at 7.9GHz and the -10 dB bandwidth reaches 3.2GHz.


2011 ◽  
Vol 374-377 ◽  
pp. 1541-1544 ◽  
Author(s):  
Yu Lan Cheng ◽  
Ping Xia ◽  
Ke Xiang Wei ◽  
Quan Bai

La 0.67 Sr 0.33 MnO 3 particles with different particle size have been prepared by sol-gel method. The structure, magnetization and microwave absorption properties have been investigated. The results show that the particle size can be controlled by sinter temperature. The peaks of the maximum reflection loss (RL) move to higher frequency regions with increasing particle size. The value of the maximum RL is -32 dB at 10.2GHz with a particle size of 58.5nm. The bandwidth with a RL exceeding -8dB reached 1.6GHz in the whole measured frequency range, suggesting that La 0.67 Sr 0.33 MnO 3 particles are promising for application as a wideband and strong absorption building microwave absorber.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2078
Author(s):  
Qianqian Shi ◽  
Guodong Zhang ◽  
Yuheng Wang ◽  
Yu Lan ◽  
Jiang Wang ◽  
...  

Vanadium pentoxide (V2O5) is the most stable phase among many transition metal vanadium oxides, and has already been widely used in many fields. In this study, the morphological, structural, and optical responses of V2O5 film to ultrafast laser irradiation was investigated. The third-order nonlinear optical properties of V2O5 film were measured by common Z-scan technique, and the results showed that V2O5 film has self-defocusing and saturable absorption characteristics. The third-order nonlinear absorption coefficient and nonlinear refractive index were calculated to be −338 cm/GW and −3.62 × 10−12 cm2/W, respectively. The tunable saturated absorption with modulation depth ranging from 13.8% to 29.3% was realized through controlling the thickness of vanadium pentoxide film. V2O5 film was irradiated by ultrafast laser with variable pulse energy, and the morphological and structural responses of the V2O5 to the laser with different energy densities were investigated. The irreversible morphological and structural responses of V2O5 films to ultrafast laser irradiation was analyzed using the phase-contrast microscope and Raman spectrum. The chemical structure change from V2O5 to V6O13 was considered the main reason for refractive index modification.


Optik ◽  
2018 ◽  
Vol 171 ◽  
pp. 839-844 ◽  
Author(s):  
Peng Zhou ◽  
Zhiqiang Huang ◽  
Xuguang Sun ◽  
Guicang Ran ◽  
Rongren Shen ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 385 ◽  
Author(s):  
Ana Karen Acero-Gutiérrez ◽  
Ana Lilia Pérez-Flores ◽  
Jesús Gilberto Godínez-Salcedo ◽  
Joel Moreno-Palmerin ◽  
Ángel de Jesús Morales-Ramírez

Tin oxide (SnO2) nanoparticles were successfully added to silicon oxide (SiO2) coatings deposited on A36 steel by the sol-gel and dip-coating methods. These coatings were developed to improve the performance of corrosion protection of steel in a 3 wt % NaCl solution. The effects of modifying the SnO2 particle concentration from 0–7.5 vol % were investigated by polarization resistance, Tafel linear polarization, and electrochemical impedance spectroscopy (EIS). The formation of protective barriers and their corrosion inhibition abilities were demonstrated. It was found by electrochemical studies that all of the coated samples presented higher corrosion resistances compared with an uncoated sample, indicating a generally beneficial effect from the incorporation of the nanoparticles. Furthermore, it was established that the relationship between the SnO2 content and the corrosion inhibition had parabolic behaviour, with an optimum SnO2 concentration of 2.5 vol %. EIS showed that the modified coatings improved barrier properties. The resistance for all of the samples was increased compared with the bare steel. The corrosion rate measurements highlighted the corrosion inhibition effect of SnO2 nanoparticles, and the Tafel polarization curves demonstrated a decrease in system dissolution reactions at the optimal nanoparticle concentration.


Sign in / Sign up

Export Citation Format

Share Document