SOI Technologies: Device Applications and Future Prospects

1984 ◽  
Vol 35 ◽  
Author(s):  
B-Y. Tsaur

ABSTRACTSilicon-on-insulator (SOI) technologies have four major applications: very-large-scale integrated circuits (ICs), high-voltage ICs, large-area ICs, and vertical ICs. This paper will review the recent progress made in these areas and discuss the prospects of various SOI technologies for achieving commercialization.

1993 ◽  
Vol 316 ◽  
Author(s):  
H. H. Hosack

Silicon-On-Insulator (SOI) technology [1-4] has been shown to have significant performance and fabrication advantages over conventional bulk processing for a wide variety of large scale CMOS IC applications. Advantages in radiation environments has generated significant interest in this technology from military and space science communities [5,6]. Possible advantages of SOI technology for low power, low voltage and high performance circuit applications is under serious consideration by several commercial IC manufacturers [7,8].


MRS Bulletin ◽  
1998 ◽  
Vol 23 (9) ◽  
pp. 16-21 ◽  
Author(s):  
Dieter M. Gruen ◽  
Ian Buckley-Golder

Carbon in the form of diamond is the stuff of dreams, and the image of the diamond evokes deep and powerful emotions in humans. Following the successful synthesis of diamond by high-pressure methods in the 1950s, the startling development of the low-pressure synthesis of diamond films in the 1970s and 1980s almost immediately engendered great expectations of utility. The many remarkable properties of diamond due in part to its being the most atomically dense material in the universe (hardness, thermal conductivity, friction coefficient, transparency, etc.) could at last be put to use in a multitude of practical applications. “The holy grail”—it was realized early on—would be the development of large-area, doped, single-crystal diamond wafers for the fabrication of high-temperature, extremely fast integrated circuits leading to a revolution in computer technology.Excitement in the community of chemical-vapor-deposition (CVD) diamond researchers, funding agencies, and industrial companies ran high in expectation of early realization for many of the commercial goals that had been envisioned: tool, optical, and corrosion-resistant coatings; flat-panel displays; thermomanagement for electronic components, etc. Market projection predicting diamond-film sales in the billions of dollars by the year 2000 was commonplace. Hopes were dashed when these optimistic predictions ran up against the enormous scientific and technical problems that had to be overcome in order for those involved to fully exploit the potential of diamond. This experience is not new to the scientific community. One need only remind oneself of the hopes for cheap nuclear power or for high-temperature superconducting wires available at hardware stores to realize that the lag between scientific discoveries and their large-scale applications can be very long. Diamond films are in fact being used today in commercial applications.


2005 ◽  
Author(s):  
T. Someya ◽  
T. Sakurai ◽  
T. Sekitani ◽  
H. Kawaguchi ◽  
S. Iba ◽  
...  

2020 ◽  
Author(s):  
David Moss

With superior optical properties, high flexibility in engineering its material properties, and strong capability for large-scale on-chip integration, graphene oxide (GO) is an attractive solution for on-chip integration of two-dimensional (2D) materials to implement functional integrated photonic devices capable of new features. Over the past decade, integrated GO photonics, representing an innovative merging of integrated photonic devices and thin GO films, has experienced significant development, leading to a surge in many applications covering almost every field of optical sciences. This paper reviews the recent advances in this emerging field, providing an overview of the optical properties of GO as well as methods for the on-chip integration of GO. The main achievements made in GO hybrid integrated photonic devices for diverse applications are summarized. The open challenges as well as the potential for future improvement are also discussed.


2020 ◽  
Author(s):  
David Moss

With superior optical properties, high flexibility in engineering its material properties, and strong capability for large-scale on-chip integration, graphene oxide (GO) is an attractive solution for on-chip integration of two-dimensional (2D) materials to implement functional integrated photonic devices capable of new features. Over the past decade, integrated GO photonics, representing an innovative merging of integrated photonic devices and thin GO films, has experienced significant development, leading to a surge in many applications covering almost every field of optical sciences. This paper reviews the recent advances in this emerging field, providing an overview of the optical properties of GO as well as methods for the on-chip integration of GO. The main achievements made in GO hybrid integrated photonic devices for diverse applications are summarized. The open challenges as well as the potential for future improvement are also discussed.


2013 ◽  
Vol 1538 ◽  
pp. 363-369
Author(s):  
Di Liang ◽  
Géza Kurczveil ◽  
Marco Fiorentino ◽  
Sudharsanan Srinivasan ◽  
David A. Fattal ◽  
...  

ABSTRACTHybrid silicon laser is a promising solution to enable high-performance light source on large-scale, silicon-based photonic integrated circuits (PICs). As a compact laser cavity design, hybrid microring lasers are attractive for their intrinsic advantages of small footprint, low power consumption and flexibility in wavelength division multiplexing (WDM), etc. Here we review recent progress in unidirectional microring lasers and device thermal management. Unidirectional emission is achieved by integrating a passive reflector that feeds laser emission back into laser cavity to introduce extra unidirectional gain. Up to 4X of device heating reduction is simulated by adding a metal thermal shunt to the laser to “short” heat to the silicon substrate through buried oxide layer (BOX) in the silicon-on-insulator (SOI) substrate. Obvious device heating reduction is also observed in experiment.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4108
Author(s):  
Taejun Lee ◽  
Chihun Lee ◽  
Dong Kyo Oh ◽  
Trevon Badloe ◽  
Jong G. Ok ◽  
...  

Metasurfaces have shown promising potential to miniaturize existing bulk optical components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight footprints. However, the absence of proper manufacturing methods has been one of the main obstacles preventing the practical application of metasurfaces and commercialization. Although a variety of fabrication techniques have been used to produce optical metasurfaces, there are still no universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale metasurfaces for device/product-level applications. The fundamentals and recent progress of the large area and high-throughput manufacturing methods are discussed with practical device applications. We systematically classify various top-down scalable patterning techniques for optical metasurfaces: firstly, optical and printing methods are categorized and then their conventional and unconventional (emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.


2018 ◽  
Vol 6 (25) ◽  
pp. 11631-11663 ◽  
Author(s):  
Shimou Chen ◽  
Kaihua Wen ◽  
Juntian Fan ◽  
Yoshio Bando ◽  
Dmitri Golberg

Recent progress in designing electrolytes for high-voltage lithium-ion batteries and solid-state lithium batteries is summarized.


2017 ◽  
Vol 64 (3) ◽  
pp. 659-673 ◽  
Author(s):  
Don Disney ◽  
Ted Letavic ◽  
Tanya Trajkovic ◽  
Tomohide Terashima ◽  
Akio Nakagawa

Sign in / Sign up

Export Citation Format

Share Document