Diamond Films: Recent Developments

MRS Bulletin ◽  
1998 ◽  
Vol 23 (9) ◽  
pp. 16-21 ◽  
Author(s):  
Dieter M. Gruen ◽  
Ian Buckley-Golder

Carbon in the form of diamond is the stuff of dreams, and the image of the diamond evokes deep and powerful emotions in humans. Following the successful synthesis of diamond by high-pressure methods in the 1950s, the startling development of the low-pressure synthesis of diamond films in the 1970s and 1980s almost immediately engendered great expectations of utility. The many remarkable properties of diamond due in part to its being the most atomically dense material in the universe (hardness, thermal conductivity, friction coefficient, transparency, etc.) could at last be put to use in a multitude of practical applications. “The holy grail”—it was realized early on—would be the development of large-area, doped, single-crystal diamond wafers for the fabrication of high-temperature, extremely fast integrated circuits leading to a revolution in computer technology.Excitement in the community of chemical-vapor-deposition (CVD) diamond researchers, funding agencies, and industrial companies ran high in expectation of early realization for many of the commercial goals that had been envisioned: tool, optical, and corrosion-resistant coatings; flat-panel displays; thermomanagement for electronic components, etc. Market projection predicting diamond-film sales in the billions of dollars by the year 2000 was commonplace. Hopes were dashed when these optimistic predictions ran up against the enormous scientific and technical problems that had to be overcome in order for those involved to fully exploit the potential of diamond. This experience is not new to the scientific community. One need only remind oneself of the hopes for cheap nuclear power or for high-temperature superconducting wires available at hardware stores to realize that the lag between scientific discoveries and their large-scale applications can be very long. Diamond films are in fact being used today in commercial applications.

1992 ◽  
Vol 242 ◽  
Author(s):  
R. W. Pryor ◽  
M. W. Geis ◽  
H. R. Clark

ABSTRACTA new technique has been developed to grow semiconductor grade diamond substrates with dimensions comparable to those of currently available Si wafers. Previously, the synthetic single crystal diamond that could be grown measured only a few millimeters across, compared with single crystal Si substrates which typically are 10 to 15 cm in diameter. In the technique described, an array of features is first etched in a Si substrate. The shape of the features matches that of inexpensive, synthetic faceted diamond seeds. A diamond mosaic is then formed by allowing the diamond seeds to settle out of a slurry onto the substrate, where they become fixed and oriented in the etched features. For the experiments reported, the mosaic consists of seeds ∼ 100 μm across on 100 μm centers. A mosaic film is obtained by chemical vapor deposition of homoepitaxial diamond until the individual seeds grow together. Although these films contain low angle (<1°) grain boundaries, smooth, continuous diamond films have been obtained with electronic properties substantially better than those of polycrystalline diamond films and equivalent to those of homoepitaxial single crystal diamond films. The influence of growth conditions and seeding procedures on the crystallographic and electronic properties of these mosaic diamond films is discussed.


2014 ◽  
Vol 21 (1) ◽  
pp. 279-289 ◽  
Author(s):  
S. V. Prants ◽  
M. V. Budyansky ◽  
M. Yu. Uleysky

Abstract. Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is proposed and applied to find out the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima-derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the 11 March 2011 tsunami that caused heavy damage of the Fukushima Nuclear Power Plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of 134Cs and 137Cs concentrations collected during two research vessel (R/V) cruises in June and July 2011 in the large area of the northwest Pacific (Kaeriyama et al., 2013; Buesseler et al., 2012). It is shown that Lagrangian simulations are useful for finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of simulation are supported by tracks of the surface drifters that were deployed in the area.


1994 ◽  
Vol 349 ◽  
Author(s):  
K.V. Ravi ◽  
D.S. Olson ◽  
C.A. Koch

ABSTRACTAmong the various low pressure techniques being developed for the synthesis of diamond films and bulk diamond slabs the combustion flame synthesis process has some distinct advantages. In this approach the combustion reaction between acetylene and oxygen is utilized to generate the requisite energy to activate excess acetylene in the gas mix leading to the deposition of diamond films on a temperature controlled substrate brought into contact with the flame. Other diamond synthesis approaches, such as microwave enhanced and the filament assisted chemical vapor deposition processes, and the various arc jet techniques utilize mixtures of hydrogen and methane as the process gases. Oxygen and oxidizing specie ( such as OH radicals) in the flame ambient may be much more effective than atomic hydrogen in promoting the growth of diamond over the growth of graphite and other non- diamond forms of carbon. In addition this technique enables the growth of diamond at high rates and is relatively easily scaled for large area synthesis. In this paper a discussion of this technique is presented drawing upon recent research by the authors as well as published work to present a general discussion of the issues involved in the development of this technique of low pressure diamond synthesis.


2019 ◽  
Vol 7 (34) ◽  
pp. 10598-10604 ◽  
Author(s):  
Xukun Zhu ◽  
Aolin Li ◽  
Di Wu ◽  
Peng Zhu ◽  
Haiyan Xiang ◽  
...  

A local large-scale reversible phase transition of MoTe2 film was accomplished through the heat treatment.


ACS Nano ◽  
2018 ◽  
Vol 12 (9) ◽  
pp. 9390-9396 ◽  
Author(s):  
Liyun Zhao ◽  
Qiuyu Shang ◽  
Yan Gao ◽  
Jia Shi ◽  
Zhen Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document