Effect of Mechanical Stress on Electromigration Failure Mode During Accelerated Electromigration Tests

1994 ◽  
Vol 356 ◽  
Author(s):  
S. Pramanick ◽  
D. D. Brown ◽  
V. Pham ◽  
P. Besser ◽  
J. Sanchez ◽  
...  

AbstractThe electromigration failure mode and failure rate during accelerated electromigration testing is expected to be strongly affected by the mechanical stress state of Al lines, since tensile stress and compressive stress states favor void growth and hillock formations (extrusions), respectively. During electromigration testing, the mechanical stress state or evolution of mechanical stress of an interconnect is a function of current density and temperature, the two principal variables in electromigration testing. In our experiments, we have observed two different electromigration failure modes by varying the current density and temperatures where (i) the passivated Al lines tested at high current density and high temperatures failed by extrusion or hillock type failure and (ii) the interconnect lines tested at low current density and moderate temperature failed by voiding. A mechanical stress model which incorporates both the thermally generated stress and electromigration induced mechanical stress is invoked to explain the electromigration failure mode selection observed in our experiments.

Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits, the Cu being added since it improves resistance to electromigration failure. As linewidths decrease to submicrometer dimensions, the current density carried by the interconnect increases dramatically and the probability of electromigration failure increases. To increase the robustness of the interconnect lines to this failure mode, an understanding of the mechanism by which Cu improves resistance to electromigration is needed. A number of theories have been proposed to account for role of Cu on electromigration behavior and many of the theories are dependent of the elemental Cu distribution in the interconnect line. However, there is an incomplete understanding of the distribution of Cu within the Al interconnect as a function of thermal history. In order to understand the role of Cu in reducing electromigration failures better, it is important to characterize the Cu distribution within the microstructure of the Al-Cu metallization.


Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...


Author(s):  
Xia He ◽  
Fei Yan ◽  
Mingyuan Gao ◽  
Yunjing Shi ◽  
Guanglong Ge ◽  
...  

Author(s):  
Anand Abhishek ◽  
Niraj Kumar ◽  
Udit Narayan Pal ◽  
Bhim Singh ◽  
S. A. Akbar

Author(s):  
Alan M. Cook ◽  
Edward L. Wright ◽  
Khanh T. Nguyen ◽  
Colin D. Joye ◽  
John C. Rodgers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document