13C Isotopic Effect on the Raman Spectrum and Structure of C60 Fullerene

1994 ◽  
Vol 359 ◽  
Author(s):  
Pham V. Huong ◽  
Denis JÉrÔme ◽  
Pascale Auban-Senzier ◽  
Patrick Bernier

ABSTRACTThe Raman spectrum of 13C enriched C60 samples is recorded and analyzed in comparison with that of undoped 12C60. Comparison with the isotopic effect in diamond and in other infinite solid networks is also made.A frequency shift depending on the amount of 13C is observed for the C=C stretching vibration, without any splitting. This effect is unusual and is a proof that the C=C is not localized and its double bond character is not isolated but strongly coupled with other bonds in the cage. If the CC bond was independent as in small or non-spherical molecules such as organic compounds, an isotopic effect of Δv ≃ 30 cm-1 for 12C=13C and Δv ≃ 60 cm−1 for 13C=13C could be expected and a splitting could appear in the case of uncompleted 13C substitution and variable relative intensities could be observed. It is not the case of 13C60.In isotopic C60, all C=C vibrations in the spherical network are stronglycoupled ; an average isotopic mass must be considered for the randomly distributed isotopic atoms in the material to interpret the experimental result. C60 has thus more solid than molecule behavior.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Luke Gayer ◽  
Nicolas Lang ◽  
Sinéad M. Ryan ◽  
David Tims ◽  
Christopher E. Thomas ◽  
...  

Abstract Isospin-1/2 Dπ scattering amplitudes are computed using lattice QCD, working in a single volume of approximately (3.6 fm)3 and with a light quark mass corresponding to mπ ≈ 239 MeV. The spectrum of the elastic Dπ energy region is computed yielding 20 energy levels. Using the Lüscher finite-volume quantisation condition, these energies are translated into constraints on the infinite-volume scattering amplitudes and hence enable us to map out the energy dependence of elastic Dπ scattering. By analytically continuing a range of scattering amplitudes, a $$ {D}_0^{\ast } $$ D 0 ∗ resonance pole is consistently found strongly coupled to the S-wave Dπ channel, with a mass m ≈ 2200 MeV and a width Γ ≈ 400 MeV. Combined with earlier work investigating the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , and $$ {D}_0^{\ast } $$ D 0 ∗ with heavier light quarks, similar couplings between each of these scalar states and their relevant meson-meson scattering channels are determined. The mass of the $$ {D}_0^{\ast } $$ D 0 ∗ is consistently found well below that of the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , in contrast to the currently reported experimental result.


1977 ◽  
Vol 55 (9) ◽  
pp. 1444-1453 ◽  
Author(s):  
Kamal Kumar ◽  
P. R. Carey

The resonance Raman spectra of three pharmacologically important sulfonamides, 4-sulfamyl-4′-dimethylaminoazobenzene (1), 4-sulfamyl-4′-hydroxyazobenzene (2), and 4-sulfamyl-4′-aminoazobenzene (3), are compared with those of analogues lacking the sulfonamide group. The —SO2NH2 moiety does not directly contribute intense or moderately intense bands to the resonance Raman spectra of 1, 2, and 3. However, —SO2NH2 ionization is reflected by frequency changes in a band near 1140 cm−1 and intensity changes in the 1420 cm−1 region. The normal Raman spectrum of 2 confirms that the intensity changes reflect —SO2NH2 ionization rather than unrelated changes in vibronic coupling. The effect of —OH ionization on the resonance Raman spectrum of 2 emphasizes that caution must be exercised when relating spectral perturbations to changes in contributions from valence bond type structures. Resonance Raman excitation profiles for the 1138, 1387, and 1416 cm−1 bands of 2 show that these bands gain intensity by coupling with the electronic transitions in the 240 to 450 nm region and that, more than 1000 cm−1 to the red of λmax, the wavelength dependence can be closely reproduced by the FB type terms of Albrecht and Hutley. The excitation profile for each band shows evidence for structure in the 470 nm region, although lack of sufficient excitation wavelengths prevents accurate estimation of the spacing. Under conditions of rigorous resonance the intense Raman lines all occur in the 1400 cm−1 region, i.e. they are 'bunched' in the region known to contain the —N=N— stretching vibration.


1943 ◽  
Vol 16 (4) ◽  
pp. 841-847
Author(s):  
A. Gantmacher ◽  
S. Medvedev

Abstract 1. When chloroprene and isoprene polymerize, besides the frequency characterizing the conjugate double bond in the monomer, there appears a higher frequency corresponding to the isolated double bond in the polymer. In the polymerization process, the intensity of the frequency of the conjugate double bond decreases and the intensity of the frequency of the isolated double bond increases. Because of the increase in the number of single bonds in the polymer, the intensity of the frequency of the single bond 1005 in the polymer is considerably greater than in the monomer. 2. Even in the case of the samples with high polymer contents (greater than 50 per cent), the intensity of the frequency of the conjugate double bond is considerably greater than the intensity of the frequency of the isolated double bond. This is attributable to the fact that part of double bonds disappear during polymerization. 3. The Raman spectra of the chloroprene and isoprene polymers differ essentially from those of the monomers. To characterize the frequencies of vibration in the polymer molecule, it is essential to investigate its Raman spectrum in a medium free of the monomer. 4. The formation of highly polymeric molecules on polymerization does not result in an increase in the intensity of the continuous background in spectrograms.


2015 ◽  
Vol 71 (12) ◽  
pp. o1086-o1087
Author(s):  
Ioannis Tiritiris ◽  
Willi Kantlehner

In the crystal structure of the title salt, C24H38N42+·2C24H20B−, the C—N bond lengths in the central CN3unit of the guanidinium ion are 1.3364 (13), 1.3407 (13) and 1.3539 (13) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyldimethylazaniumyl)propyl group have single-bond character. In the crystal, C—H...π interactions between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions are present, leading to the formation of a two-dimensional supramolecular pattern parallel to theacplane.


2012 ◽  
Vol 68 (6) ◽  
pp. o1812-o1812 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Willi Kantlehner

The reaction of 3,3,3-tris(dimethylamino)-1-phenylprop-1-yne with bromine in pentane yields the title compound, C13H17N2 +·Br−. The acetylenic bond distance [1.197 (2) Å] is consistent with a C[triple-bond]C triple bond. The amidinium C=N bonds [1.325 (2) and 1.330 (2) Å] have double-bond character and the positive charge is delocalized between the two dimethylamino groups.


2021 ◽  
Author(s):  
Wangjing Ma ◽  
Bonan Liu ◽  
Duanda Wang ◽  
Jun Zhao ◽  
Lu Zhang ◽  
...  

Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing new organic compounds from olefins and their derivatives, which was based on C=C migration along carbon chain and cis/trans transform, and it plays a vital role in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development and synthesis of natural products and so on. In this paper, advances of five types of catalytic methods for CCDB of olefins and their derivatives since the 1960s were discussed in detail; Based on his recent work, the author mainly introduces the application and development of photocatalysis in CCDB of olefins and their derivatives.


Sign in / Sign up

Export Citation Format

Share Document