In-Situ Formation and Characterization of α-Si3N4 Whiskers from Nano Amorphous Si-N-C Powders

1994 ◽  
Vol 363 ◽  
Author(s):  
Ya-Li Li ◽  
Yong Liang ◽  
Zhuang-Qi Hu

Abstractα-Si3N4 whiskers were formed from laser-synthesized nanoscale amorphous Si-N-C powders at 1873K under 1 atm N2. The as-formed whiskers were characterized by TEM, STEM, XRD techniques and the process conditions for the whisker growth were studied. The whiskers exhibit various morphologies such as the long thick straight, the prismatic, the ribbon-like, and knuckled whiskers. The gas phase reaction among N2, SiO, and CO gases leads to Si3N4 whisker growth on the pre-crystallized α-Si3N4 grains by the Vapor-Solid (VS) mechanism along specific crystal planes such as {1101}., which ensures an in-situ formation. No addition of other catalyst and the atomic combination of the elements in the Si-N-C powders ensure a high purity of the whiskers.

2016 ◽  
Vol 273 ◽  
pp. 91-98 ◽  
Author(s):  
Jürgen Ulpts ◽  
Wolfgang Dreher ◽  
Lars Kiewidt ◽  
Miriam Schubert ◽  
Jorg Thöming

2007 ◽  
Vol 40 (14) ◽  
pp. 5141-5149 ◽  
Author(s):  
Giona Kilcher ◽  
Lei Wang ◽  
Craig Duckham ◽  
Nicola Tirelli
Keyword(s):  

2010 ◽  
Vol 6 ◽  
pp. 709-712 ◽  
Author(s):  
Julien Monot ◽  
Louis Fensterbank ◽  
Max Malacria ◽  
Emmanuel Lacôte ◽  
Steven J Geib ◽  
...  

In situ formation of two cyclic (alkyl) (amino) carbenes (CAACs) followed by addition of BF3•Et2O provided the first two examples of CAAC–BF3 complexes: 1-(2,6-diisopropylphenyl)-3,5,5-trimethyl-3-phenylpyrrolidin-2-ylidene trifluoroborane, and 2-(2,6-diisopropylphenyl)-3,3-dimethyl-2-azaspiro[4.5]decan-1-ylidene trifluoroborane. These CAAC–BF3 complexes are robust compounds that are stable to ambient laboratory conditions and silica gel chromatography. They were characterized by spectroscopy and X-ray crystallography. In contrast, a CAAC complex with borane (BH3) was readily formed in situ according to 1H and 11B NMR analysis, but did not survive the workup conditions. These results set the stage for further studies of the chemistry of CAAC boranes.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2009 ◽  
Vol 289-292 ◽  
pp. 185-194 ◽  
Author(s):  
Milagros Wong-Sifuentes ◽  
Makoto Nanko ◽  
Joaquín Lira-Olivares

Removal of fine particles from some gas-product effluents from motors and industries, using filters, is an important subject in the field of public health and environment. In the present work, a porous silicon filter was produced, which is able to capture most of the particles undesirable for the environment (transported by gases), larger than the pore diameter (micrometer) of the filter and even smaller size particles. The development of whiskers inside of the pores of the silicon filter, improve its ability to catch smaller particles than the filter’s size pores. Those whiskers are made of Silicon Nitride, produced by a Nitridation process. A different time-temperature schedule for the formation of -silicon nitride (-Si3N4) whiskers by direct Nitridation of the porous silicon filter was studied, in order to optimize the amount of whiskers and improve the filter quality. Four different temperatures (1000, 1100, 1200 and 1300 °C) were selected, each with two different holding times (15 min and 1 hour) for complete Nitridation with N2 and N2+H2 gases. The as-formed whiskers were characterized by SEM, XRD techniques and the process conditions were studied. The filter with the Si3N4 whiskers was characterized evaluating mechanical properties of the porous silicon filter (Micro Hardness and Young Modulus). The permeability measurements were made before and after the Nitridation process. Analysis indicates that the higher Si3N4 whiskers formation temperature was 1300 °C for the gas (N2+H2) phase reaction results from the lower PSiO2/Psio ratio in the Si-N system. Titanium (99% pure) was used with the purpose of reduction of the oxygen partial pressure and the increase of the amount of -silicon nitride whiskers. The porous silicon filter improved its conditions with the silicon nitride whiskers, even though decreases also the fluid permeability measurement. However, it has a smaller flow decrement than filters with smaller porosity. The mechanical properties did not have variation at all, the porosity size increased because of the diffusion of Si to form whiskers in the Nitridation process.


2012 ◽  
Vol 83 (1) ◽  
pp. 015106 ◽  
Author(s):  
Eric B. Webb ◽  
Patrick J. Rensing ◽  
Carolyn A. Koh ◽  
E. Dendy Sloan ◽  
Amadeu K. Sum ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Chakradhar Sridhar ◽  
Nagesh Gunvanthrao Yernale ◽  
M. V. N. Ambika Prasad

The present study deals with the synthesis and characterization of nanocrystalline vanadium pentoxide (V2O5) nanoparticles and their antibacterial and antifungal activity onStaphylococcus aureus and Aspergillus niger, respectively, by agar diffusion method. The metal oxide has been synthesized by employing the sol-gel method, polyaniline (PANI) has been synthesized by chemical oxidation, and PANI/V2O5composites have been synthesized byin situpolymerization method with different ratios (10, 20, 30, 40, and 50 weight%) of V2O5in PANI. The newly prepared composites were characterized by FTIR and powder X-ray diffraction (P-XRD) techniques and are found to be formed of PANI/V2O5nanocomposites, and also the compounds showed moderate antibacterial and antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document