Giant Magnetoresistance in Hybrid Magnetic Nanostructures Including Both Layers and Clusters

1995 ◽  
Vol 384 ◽  
Author(s):  
P.A. Schroeder ◽  
P. Holody ◽  
R. Loloee ◽  
J. L. Duvail ◽  
A. BarthÉlemy ◽  
...  

ABSTRACTEarly experiments to define oscillations in the CIP magnetoresistance (CIP-MR) of Ag/Co analogous to those for tcu < 5nm in Cu/Co were unsuccessful. The MR in this region was very small. Later experiments by Araki using thin (0.6nm ) Co layers produced much larger MRs and lead us to look at the MRs of similar samples more closely. We conclude that the large MR of such samples is associated with the discontinuous nature of the Co layers. The object of the present paper is to combine the high MR associated with the thin Co layers with the field dependence governed by the magnetization reversal in thick, and magnetically soft permalloy (Py) layers. We have measured the CIP-MR of sputtered samples of the [Co(O.4 nm)/Ag(tAg)/Py(tpy)/Ag(tAg)]×15 system with tAg ranging from 1.05 to 4nm and with tpy = 2 or 4nm. We obtain MRs at 4.2K as large as 35% in less than 100e with slopes as high as 5%/Oe. With CPP measurements slopes as high as 10%/Oe have been obtained. Squid magnetometer measurements indicate that, as the temperature increases, there is a crossover to superparamagnetic behaviour and a resulting gross deterioration of the MR slopes at room temperature. Efforts to increase the room temperature sensitivity are described. Detailed measurements of the CPP-MR of the [Co(0.4nm)/Ag(4nm)/Py(tpy)/Ag(4nm)]x20 series of multilayers are consistent with a two spin band model modified to take account of the granular nature of the Co.

1993 ◽  
Vol 313 ◽  
Author(s):  
S. Hossain ◽  
A. Waknis ◽  
D. Seale ◽  
M. Tan ◽  
M.R. Parker ◽  
...  

ABSTRACTThe phenomenon of giant magnetoresistance (GMR), previously measured only in multilayer films comprising ferromagnetic layers separated by nonmagnetic spacers, has recently been observed in single layer ‘granular’ alloy thin films prepared by cosputtering a ferromagnet and a nonmagnet which tend to phase separate (cluster) under equilibrium conditions. We have systematically studied the magnetoresistance of two new phase separating GMR systems (Ni66Fe16Co18-Ag and Co9oFelo-Ag) both of which exhibit large room temperature GMR (>11% and >14%, respectively). We have also attempted to influence the details of the field dependence of the magnetoresistance in the previously studied Co-Ag system by employing novel processing methods including interrupted sputtering and layering of the Co-Ag alloy with Cu spacers.


2010 ◽  
Vol 168-169 ◽  
pp. 23-26 ◽  
Author(s):  
L.V. Lutsev ◽  
A.I. Stognij ◽  
N.N. Novitskii ◽  
A.S. Shulenkov

The injection magnetoresistance effect in SiO2(Co)/GaAs heterostructures, where SiO2(Co) is a granular SiO2 film containing Co nanoparticles, has been studied. This effect manifests itself in the avalanche breakdown mode and has extremely large values at room temperature due to the spin-dependent potential barrier. We consider application of the IMR effect and SiO2(Co)/GaAs heterostructures in spintronic devices – high sensitive magnetic sensors and field-effect transistors governed by applied magnetic field.


2005 ◽  
Vol 907 ◽  
Author(s):  
Amanda K Petford-Long ◽  
Thomas Bromwich ◽  
Amit Kohn ◽  
Victoria Jackson ◽  
Takeshi Kasama ◽  
...  

AbstractOne of the most widely studied types of magnetic nanostructure is that used in devices based on the giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) phenomena. In order to understand the behaviour of these materials it is important to be able to follow their magnetisation reversal mechanism, and one of the techniques enabling micromagnetic studies at the sub-micron scale is transmission electron microscopy. Two techniques can be used: Lorentz transmission electron microscopy and off-axis electron holography, both of which allow the magnetic domain structure of a ferromagnetic material to be investigated dynamically in real-time with a resolution of a few nanometres. These techniques have been used in combination with in situ magnetizing experiments, to carry out qualitative and quantitative studies of magnetization reversal in a range of materials including spin-tunnel junctions, patterned thin film elements and magnetic antidot arrays. Quantitative analysis of the Lorentz TEM data has been carried out using the transport of intensity equation (TIE) approach.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


1985 ◽  
Vol 40 (9) ◽  
pp. 874-876
Author(s):  
Hilmar Bischof ◽  
Wolfram Baumann

Abstract The effect of an external electric field on the total fluorescence of solute molecules is studied up to fourth order theoretically, and is checked experimentally with 4´-N,N-dimethylamino- 4-nitrostilbene in dioxane at room temperature.


1994 ◽  
Vol 65 (16) ◽  
pp. 2108-2110 ◽  
Author(s):  
H. L. Ju ◽  
C. Kwon ◽  
Qi Li ◽  
R. L. Greene ◽  
T. Venkatesan

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1598 ◽  
Author(s):  
Jin Xu ◽  
Justin Varghese ◽  
Giuseppe Portale ◽  
Alessandro Longo ◽  
Jamo Momand ◽  
...  

Over the past decades, the development of nano-scale electronic devices and high-density memory storage media has raised the demand for low-cost fabrication methods of two-dimensional (2D) arrays of magnetic nanostructures. Here, we present a chemical solution deposition methodology to produce 2D arrays of cobalt ferrite (CFO) nanodots on Si substrates. Using thin films of four different self-assembled block copolymers as templates, ordered arrays of nanodots with four different characteristic dimensions were fabricated. The dot sizes and their long-range arrangement were studied with scanning electron microscopy (SEM) and grazing incident small-angle X-ray scattering (GISAXS). The structural evolution during UV/ozone treatment and the following thermal annealing was investigated through monitoring the atomic arrangement with X-ray absorption fine structure spectroscopy (EXAFS) and checking the morphology at each preparation step. The preparation method presented here obtains array types that exhibit thicknesses less than 10 nm and blocking temperatures above room temperature (e.g., 312 K for 20 nm diameter dots). Control over the average dot size allows observing an increase of the blocking temperature with increasing dot diameter. The nanodots present promising properties for room temperature data storage, especially if a better control over their size distribution will be achieved in the future.


Sign in / Sign up

Export Citation Format

Share Document