Modeling, Simulation and Control of Single Wafer Process in Cluster Tool Base on Ft-Ir In-Line Sensor

1995 ◽  
Vol 389 ◽  
Author(s):  
Shaohua Liu ◽  
Peter Solomon ◽  
R. Carpio ◽  
B. Fowler ◽  
D. Simmons ◽  
...  

ABSTRACTThis paper outlines our current approach to utilize infrared reflectance spectroscopy for thin film measurement in the semiconductor industry. The multi-layer thickness and doping concentration of IC wafers can be determined by a single angle, unpolarized infrared reflectance measurement performed using Fourier transform infrared spectrometer. A computer algorithm, which matches theoretical to measured infrared reflectance spectra, was successfully employed to determine multiple thin film properties.

1995 ◽  
Vol 387 ◽  
Author(s):  
Shaohua Liu ◽  
Peter Solomon ◽  
R. Carpio ◽  
B. Fowler ◽  
D. Simmons ◽  
...  

AbstractThis paper outlines our current approach to utilize infrared reflectance spectroscopy for thin film measurement in the semiconductor industry. The multi-layer thickness and doping concentration of IC wafers can be determined by a single angle, unpolarized infrared reflectance measurement performed using Fourier transform infrared spectrometer. A computer algorithm, which matches theoretical tc measured infrared reflectance spectra, was successfully employed to determine multiple thin film properties.


2006 ◽  
Vol 3 (6) ◽  
pp. 1874-1878 ◽  
Author(s):  
K. Fukui ◽  
Y. Kugumiya ◽  
N. Nakagawa ◽  
A. Yamamoto

Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Author(s):  
Prong Kongsubto ◽  
Sirarat Kongwudthiti

Abstract Organic solderability preservatives (OSPs) pad is one of the pad finishing technologies where Cu pad is coated with a thin film of an organic material to protect Cu from oxidation during storage and many processes in IC manufacturing. Thickness of OSP film is a critical factor that we have to consider and control in order to achieve desirable joint strength. Until now, no non-destructive technique has been proposed to measure OSP thickness on substrate. This paper reports about the development of EDS technique for estimating OSP thickness, starting with determination of the EDS parameter followed by establishing the correlation between C/Cu ratio and OSP thickness and, finally, evaluating the accuracy of the EDS technique for OSP thickness measurement. EDS quantitative analysis was proved that it can be utilized for OSP thickness estimation.


2008 ◽  
Vol 381-382 ◽  
pp. 407-410
Author(s):  
Shu Jie Liu ◽  
K. Watanabe ◽  
Satoru Takahashi ◽  
Kiyoshi Takamasu

In the semiconductor industry, a device that can measure the surface-profile of photoresist is needed. Since the photoresist surface is very smooth and deformable, the device is required to measure vertical direction with nanometer resolution and not to damage it at the measurement. We developed the apparatus using multi-cantilever and white light interferometer to measure the surface-profile of thin film. But, this system with scanning method suffers from the presence of moving stage and systematic sensor errors. So, in this paper, an error separation approach used coupled distance sensors, together with an autocollimator as an additional angle measuring device, was consulted the potentiality for self-calibration of multi-cantilever. Then, according to this method, we constructed the experimental apparatus and do the measurement on the resist film. The results demonstrated the feasibility that the constructed multi-ball-cantilever AFM system combined with an autocollimator could measure the thin film with high accuracy.


2007 ◽  
Vol 62 (12) ◽  
pp. 761-768
Author(s):  
Chao-Chen Yang ◽  
Min-Fong Shu

We have utilized ZnCl2-dimethylsulfone (DMSO2) as the electrolyte with added GdCl3, FeCl2, and CoCl2, for electrodepositing a perpendicular GdFeCo magnetic thin film. The reaction at the electrode surface and the electrical conductivity of the ionic substance at different ionic concentrations were studied by cyclic voltammetry and a computerized direct current method. Moreover, the electrodeposition of the GdFeCo thin film was determined by a pulse potential method. Relation between the composition of the deposited thin film and control parameters including applied potentials was determined by EDS analysis. An amorphous structure and the thickness of the thin film were obtained by TEM analysis. Its roughness and uniformity were determined by AFM analysis. Meanwhile, a perpendicular magnetic property and pinning magnetic domain of the thin film were analyzed from results of AGM and MFM.


Sign in / Sign up

Export Citation Format

Share Document