scholarly journals Nanocrystal Formation Via Yttrium Ion Implantation into Sapphire

1995 ◽  
Vol 396 ◽  
Author(s):  
E. M. Hunt ◽  
J. M. Hampikian ◽  
D. B. Poker

AbstractIon implantation has been used to form nanocrystals in the near surface of single crystal A12O3. The ion fluence was 5 x 1016 Y+/cm2, and the implant energies investigated were 100, 150, and 170 keV. The morphology of the implanted region was investigated using transmission electron microscopy, x-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy and ion channeling. The implantation causes the formation of an amorphous surface layer which contains spherical nanosized crystals with a diameter of ∼13 nm. The nanocrystals are randomly oriented and exhibit a face-centered cubic structure with a lattice pmeter of ∼4.1 A ± .02 A. Preliminary chemical analysis shows that these nanocrystals are rich in aluminum and yttrium and poor in oxygen relative to the amorphous matrix.

1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 841-846 ◽  
Author(s):  
José Maria C. da Silva Filho ◽  
Victor A. Ermakov ◽  
Luiz G. Bonato ◽  
Ana F. Nogueira ◽  
Francisco C. Marques

ABSTRACTWe show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.


1995 ◽  
Vol 10 (6) ◽  
pp. 1546-1554 ◽  
Author(s):  
G.M. Chow ◽  
L.K. Kurihara ◽  
K.M. Kemner ◽  
P.E. Schoen ◽  
W.T. Elam ◽  
...  

Nanocrystalline CoxCu100−x (4 ⋚ x ⋚ 49 at. %) powders were prepared by the reduction of metal acetates in a polyol. The structure of powders was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), extended x-ray absorption fine structure (EXAFS) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, and vibrating sample magnetometry (VSM). As-synthesized powders were composites consisting of nanoscale crystallites of face-centered cubic (fcc) Cu and metastable face-centered cubic (fcc) Co. Complementary results of XRD, HRTEM, EXAFS, NMR, and VSM confirmed that there was no metastable alloying between Co and Cu. The NMR data also revealed that there was some hexagonal-closed-packed (hcp) Co in the samples. The powders were agglomerated, and consisted of aggregates of nanoscale crystallites of Co and Cu. Upon annealing, the powders with low Co contents showed an increase in both saturation magnetization and coercivity with increasing temperature. The results suggested that during preparation the nucleation of Cu occurred first, and the Cu crystallites served as nuclei for the formation of Co.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kamonpan Wongyai ◽  
Phitchayapak Wintachai ◽  
Rasimate Maungchang ◽  
Parawee Rattanakit

A green, simple, and rapid synthesis of gold nanoparticles using plant extract, Cryptolepis buchanani Roem. and Schult, and their applications are first described in this paper. The formation of gold nanoparticles was visually observed by the appearance of a ruby red color, which was further indicated by an absorption peak at 530 nm in UV-Vis spectroscopy. Optimization of reaction parameters for the gold nanoparticles was also investigated. Various analytical techniques were employed as part of the process of characterizing the resulting gold nanoparticles. Fourier transform infrared (FTIR) analysis revealed that the phenol compounds present in the extract were responsible for gold(III) reduction and stabilization of gold nanoparticles. Transmission electron microscopy (TEM) analysis showed that the gold nanoparticles were spherical in shape with an average diameter of 11 nm. Powder X-ray diffraction (XRD) pattern indicated that the green synthesis approach produced highly crystalline, face-centered cubic gold nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) measurements confirmed the presence of elemental gold in the prepared nanoparticles. The negative zeta potential value of gold nanoparticles was found to be -30.28 mV. The green synthesized gold nanoparticles expressed effective antibacterial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii and exhibited an excellent catalytic property in terms of its reduction ability of methylene blue.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
L. M. Artem ◽  
D. M. Santos ◽  
A. R. De Andrade ◽  
K. B. Kokoh ◽  
J. Ribeiro

This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of350∘C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm-3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol.


2006 ◽  
Vol 306-308 ◽  
pp. 1103-1108
Author(s):  
Abdul Hadi ◽  
Iskandar Idris Yaacob

Nanocrystalline CeO2 has been synthesized at room temperature using water-in-oil (w/o) microemulsion technique. The structure and properties of the nanocrystalline CeO2 were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and gas adsorption desorption measurement. XRD results showed the synthesized CeO2 has a face centered cubic structure with crystallite size of about 5.2 nm. TEM observation also indicated the presence of nanometer sized particles of CeO2. Coarser particles were also observed due to agglomeration. Gas adsorption desorption isotherms showed the behavior of fine particles with mesoporous structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Giordano T. Paganoto ◽  
Deise M. Santos ◽  
Tereza C. S. Evangelista ◽  
Marco C. C. Guimarães ◽  
Maria Tereza W. D. Carneiro ◽  
...  

This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C.


2013 ◽  
Vol 678 ◽  
pp. 212-216
Author(s):  
Subbaiyan Sugapriya ◽  
Rangarajalu Sriram ◽  
Sriram Lakshmi

ABSTRACT Silver nanowires have been synthesized by polyol process with ethylene glycol as solvent and PVP as capping agent. The silver nanowires have been characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), and Transmission electron microscope (TEM) techniques. The prepared silver nanowires were found to exhibit face-centered cubic (fcc) structure. The diameter of the prepared silver nanowires have been found to lie in the range of 60 - 80 nm and the length of the wires have been observed to be in the range of 10-20 µm. The I-V characteristics have been carried out to study the conducting behavior of the prepared silver nanowires.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Hyeong-Ho Park ◽  
Xin Zhang ◽  
Yong-June Choi ◽  
Hyung-Ho Park ◽  
Ross H. Hill

A simple synthesis of Ag nanostructures such as nanorods and nanowires has been demonstrated with citrate-capped Pt seeds. UV-visible spectra and photographs of the synthesized solutions at different UV exposure times showed that the citrate-capped Pt seed played a crucial role in the growth of Ag nanostructures. After UV exposure of the colloidal solution for 60 min, the average diameter, length, and aspect ratio of the Ag nanostructures were about 95 nm, 2.1 μm, and 22, respectively. The photochemical reduction is hypothesized to result from photoelectron transfer from adsorbed citrate to Pt nanoparticle seed allowing Ag ions to form Ag nanostructures. Based on X-ray diffraction spectra and transmission electron microscope images, the synthesized Ag nanostructures were a face-centered cubic single crystal with good purity. These results suggest that the photochemical reduction method can provide Ag nanostructures in the presence of citrate-capped Pt seeds at room temperature for anisotropic Ag products.


2011 ◽  
Vol 183-185 ◽  
pp. 1989-1994
Author(s):  
Quan Guo He ◽  
Zhao Hui Wu ◽  
Rong Hu

A facile and environment-friendly sonochemical route to fabricate well-defined Fe3O4/Pt and γ-Fe2O3/Pt composite microspheres under mild conditions has been reported. The structure and morphology of the synthetic spherical-shaped Fe3O4/Pt and γ-Fe2O3/Pt products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). The results revealed that the composites were spherical with diameter in the range of 50–80 nm and had an ordered face-centered cubic (fcc) structure of platinum. These nanocomposites with platinum-coated iron oxide can be applied in a variety of areas, including medicine, photonics, new functional device assemblies and catalysis especially for fabricating some magnetic-responsive catalyst.


Sign in / Sign up

Export Citation Format

Share Document