Atomic Kinetics and Dynamical Phason Disorder in a Quasicrystal

1995 ◽  
Vol 407 ◽  
Author(s):  
M. Dzugutov

ABSTRACTSlow relaxation dynamics in strongly coupled systems is known to be universally described by the stretched exponential Kohlrausch law. However, this phenomenon, observed in various condensed systems, still eludes a comprehensive microscopic interpretation. I discuss here the relaxation dynamics in an equilibrium dodecagonal quasicrystal which demonstrates a pronounced stretched exponential behaviour. The quasicrystal, simulated by Molecular Dynamics, reveals the presence of dynamical phason disorder, a generic form of relaxation dynamics associated with incommensurate, or phason degrees of freedom. This dynamics brings about a novel form of atomic diffusion, which is examined here by calculating the self part of intermediate scattering function Fs(Q, t). The latter displays a non-exponential decay which is found to be described by the Kohlrausch law with the stretching exponent β = 0.47. I discuss here a possible similarity between the dynamics of quasicrystals observed and that of supercooled liquids and glasses.

2021 ◽  
Author(s):  
Dominik Kern ◽  
Fabien Magri ◽  
Victor Malkovsky ◽  
Thomas Nagel

<p>From previous studies it is evident that decoupled simulations lack the ability to capture certain coupled effects, such as the Noordbergum effect or the Mandel-Cryer effect in a hydraulic-mechanical context. Thus, for detailed simulations of geotechnical or geological system, coupled simulations are usually chosen. For example, thermal-hydraulic-mechanical (THM) coupled systems, and even chemical and biological couplings (THMCB), are considered in simulations used to assess barrier integrity over long time spans in the context of geological waste disposal.</p><p>This paper is restricted to coupled hydraulic-mechanical (HM) systems. A monolithic approach is both stable and accurate for strongly coupled systems. However, as site-scale models of geological disposal facilities are also large in spatial dimensions, it is worth to investigate how staggered methods may cut down the computational costs. The fixed-stress split appears to be a promising approach for staggered schemes in terms of stability, consistency, accuracy, and efficiency.</p><p>While adding another iteration level in comparison to monolithic schemes, staggered schemes allow for lower-order approximation spaces, whereas monolithic schemes require Taylor-Hood elements resulting in a larger number of degrees of freedom per element. Both coupling schemes are implemented in the the open-source finite-element (FE) software OpenGeoSys and used to simulate a large-scale model, which is oriented towards a real site in planning in Russia. Simulation results are compared in terms of accuracy, coupling effects and performance.</p>


Author(s):  
Wen Zhang ◽  
Wenliang Wang ◽  
Hao Wang ◽  
Jiong Tang

A method for dynamic analysis of flexible bladed-disk/shaft coupled systems is presented in this paper. Being independant substructures first, the rigid-disk/shaft and each of the bladed-disk assemblies are analyzed separately in a centrifugal force field by means of the finite element method. Then through a modal synthesis approach the equation of motion for the integral system is derived. In the vibration analysis of the rotating bladed-disk substructure, the geometrically nonlinear deformation is taken into account and the rotationally periodic symmetry is utilized to condense the degrees of freedom into one sector. The final equation of motion for the coupled system involves the degrees of freedom of the shaft and those of only one sector of each of the bladed-disks, thereby reducing the computer storage. Some computational and experimental results are given.


2020 ◽  
Vol 75 (8) ◽  
pp. 803-807
Author(s):  
Svend-Age Biehs ◽  
Achim Kittel ◽  
Philippe Ben-Abdallah

AbstractWe theoretically analyze heat exchange between two quantum systems in interaction with external thermostats. We show that in the strong coupling limit the widely used concept of mode temperatures loses its thermodynamic foundation and therefore cannot be employed to make a valid statement on cooling and heating in such systems; instead, the incorrectly applied concept may result in a severe misinterpretation of the underlying physics. We illustrate these general conclusions by discussing recent experimental results reported on the nanoscale heat transfer through quantum fluctuations between two nanomechanical membranes separated by a vacuum gap.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


1999 ◽  
Vol 77 (11) ◽  
pp. 1810-1812 ◽  
Author(s):  
Alex D Bain

Strongly coupled spin systems provide many curious and interesting effects in NMR spectra, one of which is the presence of unexpected (from a first-order viewpoint) lines. A physical reason is given for the presence of these combination lines. The X part of the spectrum of an ABX spin system is analysed as an example. For an ABX system, it is well known that the AB nuclei give a spectrum consisting of two AB-type spectra, corresponding to the two orientations of the X nucleus. It can also be shown that the X part of the spectrum corresponds to the X nucleus undergoing a transition in the presence of an AB-like spin system. For weakly coupled systems, the four observed lines correspond to the four different orientations of the A and B nuclei. For a strongly coupled system, two additional lines may appear, the combination lines. The resulting six lines correspond to the four spin orientations, plus the two zero-quantum transitions. It is shown that these six lines are such that there is no net excitation of the AB-like spin system associated with the X transitions. There is no AB coherence created directly by a pulse applied to X. AB coherence is created as the system evolves, and this is responsible for many of the curious effects. This is shown to be true for all spin sub-systems, which are weakly coupled to a strongly coupled sub-system.Key words: NMR, strong coupling, second-order spectra, ABX spin system, combination lines, spectral analysis.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sunkyu Yu ◽  
Xianji Piao ◽  
Namkyoo Park

Abstract The concept of topology is universally observed in various physical objects when the objects can be described by geometric structures. Although a representative example is the knotted geometry of wavefunctions in reciprocal space for quantum Hall family and topological insulators, topological states have also been defined for other physical quantities, such as topologically distinct Fermi surfaces and enhanced lattice degrees of freedom in hyperbolic geometry. Here, we investigate a different class of topological states – topological geometry of dynamical state trajectories – in non-Hermitian and nonlinear optical dynamics, revealing topologically protected oscillation quenching mechanisms determined by parity–time (PT) symmetry. For coupled systems composed of nonlinear gain and loss elements, we classify the topology of equilibria separately for unbroken and broken PT symmetry, which result in distinct oscillation quenching mechanisms: amplitude death and oscillation death. We then show that these PT-symmetric quenching mechanisms lead to immunity against temporal perturbations, enabling the applications of topologically protected laser modulation and rectification. The observed connection between the topological geometry of dynamical states, oscillation quenching phenomena in dynamical systems theory, and PT symmetry provides a powerful toolkit for noise-immune signal processing.


1973 ◽  
Vol 187 (1) ◽  
pp. 787-794
Author(s):  
J. R. Ellis

Two degrees of freedom models of a car are employed to demonstrate the effects of the suspension derivative ∂ x/∂ z on the pitch and bounce attitudes during braking or accelerating. The work equation is employed to show that brake effort distribution between the axles has a significant effect on the attitudes when anti-dive suspension characteristics are utilized. The steady-state positions in both pitch and bounce are developed for linear systems of typical suspensions that may be either standard or coupled systems. Non-linear systems are considered using simulation techniques. A description of some simulation circuits is contained in an appendix.


Sign in / Sign up

Export Citation Format

Share Document