How Rapid Isothermal Processing Can be a Dominant Semiconductor Processing Technology in the 21st Century

1996 ◽  
Vol 429 ◽  
Author(s):  
R. Singh ◽  
R. Sharangpani ◽  
K. C. Cherukuri ◽  
Y. Chen ◽  
D. M. Dawson ◽  
...  

AbstractThe growth and advancement of the electronic and photonic industry in the 21 st century hinges on revolutionary new processing techniques that will overcome some of the most fundamental limitations of conventional methods. Rapid isothermal processing (RIP) based on incoherent radiation as the source of optical and thermal energy can play a major role in designing processing systems that offer the tight process control, low thermal budgets, low microscopic defects, high throughput and high yields required for almost every semiconductor device. Conventional RIP can be further optimized by fully exploiting the contribution of quantum photoeffects. The improved performance and reliability offered by RIP will make it the mainstream technology for the green manufacture of microelectronics, optoelectronics, solar cells, flat panel displays and microelectromechanical systems. Key issues related to the cost of ownership, design of RIP system based on the full utilization of photo–thermal effects and model based control systems are described. New experimental results for a number of processing steps are provided. These results demonstrate the importance of advanced RIP systems in providing better performance and lower defects for future devices.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Muhammad Shoaib ◽  
Nor Hisham Hamid ◽  
Aamir Farooq Malik ◽  
Noohul Basheer Zain Ali ◽  
Mohammad Tariq Jan

The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market.


2021 ◽  
Author(s):  
BASIL OLUFEMI AKINNULI ◽  
OLADELE AWOPETU ◽  
OLUWASEUN OLUWAGBEMIGA OJO

Abstract The crankshaft and engine block of automobile wear or fail after certain years of usage. The cause of failure is a contributing factor to the power loss of the engine. Power loss reduces the performance of the vehicle. Due to the economic situation in Nigeria, the cost of buying new engines is usually high and some used engines have problems that are latent. Pre-test engine analysis was carried out and torque of each selected engine was measured with a dynamometer to know the speed of the worn engine. Disassembly of four (4) cylinder engines namely; Toyota, Nissan, Mitsubishi, and Mazda were carried out and the affected failed parts, namely; main bearing, crankpin journal, and bore cylinder diameter were determined and the level of their wear as well as power losses ascertained using measuring instruments. For easy computation and analysis, a computer software using C-sharp programming language was developed to determine the power loss and predicting machining level of refurbish-ability and tested for performance evaluation. The model and its developed software are decision support tools for any automotive industry where maintenance and management of engines for improved performance and efficiency of operation is the focus.


Author(s):  
Yann Staelens ◽  
F. Saeed ◽  
I. Paraschivoiu

The paper presents three modifications for an improved performance in terms of increased power output of a straight-bladed VAWT by varying its pitch. Modification I examines the performance of a VAWT when the local angle of attack is kept just below the stall value throughout its rotation cycle. Although this modification results in a very significant increase in the power output for higher wind speeds, it requires abrupt changes in the local angle of attack making it physically and mechanically impossible to realize. Modification II improves upon the first by replacing the local angle of attack by the blade static-stall angle only when the former exceeds the latter. This step eliminates the two jumps in the local effective angle of attack curve but at the cost of a slight decrease in the power output. Moreover, it requires a discontinuous angle of attack correction function which may still be practically difficult to implement and also result in an early fatigue. Modification III overcomes the limitation of the second by ensuring a continuous variation in the local angle of attack correction during the rotation cycle through the use of a sinusoidal function. Although the power output obtained by using this modification is less than the two preceding ones, it has the inherent advantage of being practically feasible.


Author(s):  
Ho Ching ◽  
Wayne J. Book

In a conventional bilateral teleoperation, transmission delay over the Internet can potentially cause instability. The wave variables algorithm can solve this problem at the cost of poor transient response. The wave variables algorithm with adaptive predictor and drift control based on our previous work [24] has been proposed to provide stability under time delay with improved performance. The effectiveness of this algorithm is fully evaluated using human subjects with no previous experience in haptics. Three algorithms are tested using Phantom haptic devices as master and slave: conventional bilateral teleoperation with no transmission delay as control, wave variables with 200-300 ms transmission delay one way, and wave variables with adaptive predictor and direct drift control (WAPD) also with 200-300 ms delay one way. For each algorithm the human subjects are asked to perform three simple tasks: free space trajectory tracking, surface contour identification, and maze navigation. The results show WAPD to be superior to regular wave variables algorithm with higher subject ratings.


2016 ◽  
Vol 846 ◽  
pp. 294-299
Author(s):  
Grant P. Steven ◽  
Jacob Celermajer

Long before FEA was developed, people were participating in sports and as competition intensified is became clear that for many sports, the equipment plays as important a part in performance as does the athlete. With the use of modern materials and manufacturing processes there is always scope for maximizing the performance of sporting equipment. Traditionally improvements were incremental, as athletes fed-back suggestions to manufacturers and new prototypes were built and tested. Given the cost of tooling for many of the current manufacturing methods, carbon fibre with resin infusion to mention one, it is clear that such build and test iterations are not as preferable given the potential of limited success and high cost.Modern simulation techniques are capable of examining a “day–in–the-life” of an object and from an examination of the envelope of response the most sensitive regions can be detected. Iteration on the design variables, provided they remain within any constraints, be they physical or otherwise, can be incorporated to investigate their effect on performance.In this paper non-linear transient dynamic (NLTD) FEA is undertaken on a 3 iron golf club impacting a golf ball. During the less than 0.5 millisecond impact the whole outcome of the shit is established. Design changes that can lead to improved performance are studied. From the FEA simulation information on ball top spin, side spin, take off velocity are investigated.


Perfusion ◽  
2017 ◽  
Vol 32 (7) ◽  
pp. 568-573 ◽  
Author(s):  
Igo B. Ribeiro ◽  
Janet M.C. Ngu ◽  
Gurinder Gill ◽  
Fraser D. Rubens

Background: Development of a high-fidelity cardiac surgery simulator (CSS) requires integration of a heart model with a mock cardiopulmonary bypass (CPB) circuit that can provide feedback to mimic the pathophysiology of cardiac surgery. However, the cost of commercially available simulators precludes regular use. We describe steps in the construction of a high-fidelity CSS that integrates a pulsatile paracorporeal ventricular-assist device (Pulse-VAD) and a commercially available CPB simulator. Methods/Results: Eight porcine hearts were initially prepared. The configuration consisted of cannulation of the distal descending aorta and the inferior vena cava to enable pressurization of the heart after connection to the Califia® simulator, as well as Pulse-VAD cannulation (fitted with inflatable balloons) of both ventricles. After each simulation run, the team addressed key issues to derive successive model changes through consensus. Key modifications included: a) pressure maintenance of the cardiac chambers (removal of lungs, Pulse-VAD cannulation sites at the left pulmonary artery and vein, double ligation of arch vessels); b) high-fidelity beating of both ventricles (full Pulse-VAD bladder filling and ensuring balloon neck placement at the valvular plane) and c) reproducible management of porcine anatomy (management of porcine aorta, ligation of left azygous vein and shortened ascending thoracic aortic segment). Conclusion: A CSS can be prepared at low cost, with integration into a high-fidelity CPB simulator with a novel beating heart component. This setup can be used in teaching the basics of CPB techniques and complex surgical procedures. Future work is needed to validate this model as a simulation instrument.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


2011 ◽  
Vol 403-408 ◽  
pp. 3315-3321
Author(s):  
Sirisala Nageswara Rao

Efficient storage and retrieval of multidimensional data in large volumes has become one of the key issues in the design and implementation of commercial and application software. The kind of queries posted on such data is also multifarious. Nearest neighbor queries are one such category and have more significance in GIS type of application. R-tree and its sequel are data partitioned hierarchical multidimensional indexing structures that help in this purpose. Today’s research has turned towards the development of powerful analytical method to predict the performance of such indexing structures such as for varies categories of queries such as range, nearest neighbor, join, etc .This paper focuses on performance of R*-tree for k nearest neighbor (kNN) queries. While general approaches are available in literature that works better for larger k over uniform data, few have explored the impact of small values of k. This paper proposes improved performance analysis model for kNN query for small k over random data. The results are tabulated and compared with existing models, the proposed model out performs the existing models in a significant way for small k


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1134
Author(s):  
Ting Liang ◽  
Yihao Guan ◽  
Cheng Lei ◽  
Xuezhan Wu ◽  
Yuehang Bai ◽  
...  

In this paper, we design and optimize a low-cost, closed-film structure of a microelectromechanical systems (MEMS) thermopile infrared detector. By optimizing the circular arrangement of thermocouple strips and the thermal isolation design of the cold end to pursue a higher temperature difference, in addition to eliminating the absorption region, silicon nitride is deposited on the whole device surface as a passivated absorption layer. This reduces the cost while maintaining the voltage response and is suitable for mass production. The optimized detector had a 22.6% improvement in the response rate to 34.2 V/W, a detection rate of 1.02 × 108 cm·Hz1/2/W, and a response time of 26.9 ms. The design optimization of this detector provides a reference for further development of IR detectors.


2018 ◽  
Vol 1 ◽  
pp. 60-65
Author(s):  
CHelnokova V.V.

The problem of creating varieties with a complex of economically useful features in the effective use of the natural resources of the region requires the establishment of parameters and properties of potato varieties, which would provide stably high yields per area unit with good consumer and commodity qualities, resistance to diseases with a high probability. Acceleration of the process of identification and transfer to the State Commission of the Russian Federation for testing and protecting selection achievements of prospective potato selection varieties is the goal of environmental testing conducted on the basis of the Murmansk State Agricultural Experimental Station. Based on the conducted studies of the agro-climatic resources of the region and potato variety testing, a model of targeted potato varieties for the conditions of the Far North is described. This model will allow selection of new varieties adapted to local agro-landscapes to increase production, reduce the cost of its cultivation and improve consumer qualities. A new technique has been developed and its ability to produce statistically reliable results in testing of potato sorts at a lower cost of labor and funds is estimated. When introduced into practice, this technique will allow to effectively promote scientific and technological progress in the production of agricultural products, reducing the cost of it. The study and selection for different soil and climatic zones of the country of varieties with any speed ripening, high-yield, high-value, high content of protein and vitamins in tubers, good taste and storage stability, resistant to diseases and suitable for food and industrial processing will be improved. The main emphasis in the improved methodology is given to reducing its laboriousness, which is reduced by 20%, with high statistical reliability of the results obtained.


Sign in / Sign up

Export Citation Format

Share Document