Secondary Defect Formation And Gettering in Mev Self-Implanted Silicon

1996 ◽  
Vol 439 ◽  
Author(s):  
R. A. Brown ◽  
O. Kononchuk ◽  
Z. Radzimski ◽  
G. A. Rozgonyi ◽  
F. Gonzalez

AbstractSecondary defect and impurity distributions in MeV self-implanted Czochralski (Cz) and float-zone (FZ) silicon have been investigated by transmission electron microscopy, optical microscopy with preferential chemical etching, and secondary ion mass spectroscopy. We found that the ion fluence and the oxygen content of the implanted wafers affect the number and depth distribution of extended defects remaining after annealing. Intrinsic oxygen also redistributes during annealing of Cz wafers, producing two regions of relatively high oxygen concentration: one at extended defects near the ion projected range, and another, shallower region, which correlates with the distribution of vacancy-type defects. Both of these regions are also able to getter metallic impurities, depending on the implantation and annealing conditions. These defect issues may adversely affect the quality of the near surface device region, and must be controlled for successful gettering by ion implantation.

1996 ◽  
Vol 438 ◽  
Author(s):  
R. A. Brown ◽  
O. Kononchuk ◽  
Z. Radzimski ◽  
G. A. Rozgonyi ◽  
F. Gonzalez

AbstractSecondary defect and impurity distributions in MeV self-implanted Czochralski (Cz) and float-zone (FZ) silicon have been investigated by transmission electron microscopy, optical microscopy with preferential chemical etching, and secondary ion mass spectroscopy. We found that the ion fluence and the oxygen content of the implanted wafers affect the number and depth distribution of extended defects remaining after annealing. Intrinsic oxygen also redistributes during annealing of Cz wafers, producing two regions of relatively high oxygen concentration: one at extended defects near the ion projected range, and another, shallower region, which correlates with the distribution of vacancy-type defects. Both of these regions are also able to getter metallic impurities, depending on the implantation and annealing conditions. These defect issues may adversely affect the quality of the near surface device region, and must be controlled for successful gettering by ion implantation.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. T. Crosby ◽  
L. Radic ◽  
K. S. Jones ◽  
M. E. Law ◽  
P.E. Thompson ◽  
...  

ABSTRACTThe relationships between Boron Interstitial Cluster (BIC) evolution and boron diffusion in relaxed Si0.8Ge0.2 have been investigated. Structures were grown by Molecular Beam Epitaxy (MBE) with surface boron wells of variant composition extending 0.25 [.proportional]m into the substrate, as well as boron marker layers positioned 0.50 [.proportional]m below the surface. The boron well concentrations are as follows: 0, 7.5×1018, 1.5×1019, and 5.0×1019 atoms/cm3. The boron marker layers are approximately 3 nm wide and have a peak concentration of 5×1018 atoms/cm3. Samples were ion implanted with 60 keV Si+ at a dose of 1×1014 atoms/cm2 and subsequently annealed at 675°C and 750°C for various times. Plan-view Transmission Electron Microscopy (PTEM) was used to monitor the agglomeration of injected silicon interstitials and the evolution of extended defects in the near surface region. Secondary Ion Mass Spectroscopy (SIMS) concentration profiles facilitated the characterization of boron diffusion behaviors during annealing. Interstitial supersaturation conditions and the resultant defect structures of ion implanted relaxed Si0.8Ge0.2 in both the presence and absence of boron have been characterized.


1988 ◽  
Vol 144 ◽  
Author(s):  
Samuel Chen ◽  
S.-Tong Lee ◽  
G. Braunstein ◽  
G. Rajeswaran

ABSTRACTLayer intermixing in MeV Si-implanted quantum well superlattices (SLs) has been studied by transmission electron microscopy, secondary ion mass spectrometry and Rutherford backscattering spectroscopy. Molecular beam epitaxially grown GaAs(200Å) - Al0. 5Ga0.5As(200Å) SLs were implanted with 1 MeV Si+ at doses between 3 × 1014 and 1 × 1016/cm2. The implanted SLs were either furnace annealed at 850°C for 3 hr or rapid thermally annealed at 1050°C for 10 sec, both under GaAs proximity capping conditions. Totally mixed regions were observed only for the SLs implanted with 1 × 1016 Si/cm2 and then furnace annealed at 850°C for 3 hr. For the same dose, the RTA annealed SLs only showed slight layer intermixing. At lower doses, no appreciable intermixing was detected in either furnace or RTA annealed samples. By contrast, under either annealing condition extensive intermixing has been demonstrated for lower energy (220 keV) implantation, but at doses almost two orders of magnitude lowerl XTEM showed that in all the annealed samples, a defect-free zone existed in the near-surface region, followed by a band of secondary defects, with the maximum density located at about 1 μm below the surface. In the disordered samples, the position of the intermixed layers correlated with the defect band maximum. Under both annealing conditions, Si concentration profiles only showed slight broadening, and they correlated with the distribution of secondary defects as well as with the depth of the intermixed layers. The effects of dynamic annealing and surface on the implantation energy dependence, i.e., MeV vs. keV, of layer intermixing are discussed.


1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2010 ◽  
Vol 645-648 ◽  
pp. 713-716 ◽  
Author(s):  
Ming Hung Weng ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Corrado Bongiorno ◽  
...  

This paper reports on the electrical activation and structural analysis of Al implanted 4H-SiC. The evolution of the implant damage during high temperature (1650 – 1700 °C) annealing results in the presence of extended defects and precipitates, whose density and depth distribution in the implanted sheet was accurately studied for two different ion fluences (1.31014 and 1.31015 cm-2) by transmission electron microscopy. Furthermore, the profiles of electrically active Al were determined by scanning capacitance microscopy. Only a limited electrical activation (10%) was measured for both fluences in the samples annealed without a capping layer. The use of a graphite capping layer to protect the surface during annealing showed a beneficial effect, yielding both a reduced surface roughness and an increased electrical activation (20% for the highest fluence and 30% for the lowest one) with respect to samples annealed without the capping layer.


MRS Advances ◽  
2018 ◽  
Vol 3 (31) ◽  
pp. 1799-1805 ◽  
Author(s):  
Ítalo M. Oyarzabal ◽  
Mariana de M. Timm ◽  
Willian M. Pasini ◽  
Franciele S. M. de Oliveira ◽  
Francine Tatsch ◽  
...  

ABSTRACT200 μm thick solution annealed AISI 316L stainless steel foils were implanted with Ar ions to produce a 0.25 at. % concentration-depth plateau extending from the near surface to a depth of ≈ 250 nm, and then annealed at 550°C for 2 hours to form small Ar bubbles and Ar-vacancy clusters. Distinct sets of samples (including control ones without Ar) were irradiated at the temperature of 550 °C with Au ions accelerated at 5 MeV to produce an average damage content about ≈36 dpa at the region containing the Ar plateau. These samples were investigated by transmission electron microscopy using plan-view specimens prepared by ion milling. In contrast with the control samples where the irradiation causes the formation of a high concentration of extended defects and large cavities, carbonite precipitation of 1:1 metal-carbon (MC) content with a cubic structure occurs only in the samples containing the Ar bubbles. This precipitation phenomenon is not commonly observed in the literature. The results are interpreted considering that the precipitate growth process requires the emission of vacancies which are synergistically absorbed by the growth of the Ar bubbles.


2010 ◽  
Vol 1258 ◽  
Author(s):  
Khalid Naji ◽  
Herve Dumont ◽  
Guillaume Saint-Girons ◽  
Gilles Patriarche ◽  
michel Gendry

AbstractIndium phosphide (InP) nanowires (NWs) were grown by molecular beam epitaxy on various substrates including SrTiO3 (001), Si (001) and InP (111) at a growth temperature of 380°C. We used the Vapor Liquid Solid assisted method with Au as a metal catalyst. The composition of the catalyst particles and the crystalline structure of the nanowires were compared using reflection high energy electron diffraction, scanning electron microscopy and high resolution transmission electron microscope. It is found that InP nanowires grown onto InP and SrTiO3 substrates are structurally defects free with a wurtzite structure. On Si (001) substrates, the presence of stacking faults and cubic phase insertion along the growth direction is observed. The effect of the substrate on the composition of catalyst droplets and consequently on the crystalline quality of the nanowires is discussed for the conditions of nucleation and defect formation.


1984 ◽  
Vol 36 ◽  
Author(s):  
W. J. Choyke ◽  
J. A. Spitznagel ◽  
N. J. Doyle ◽  
S. Wood ◽  
R. B. Irwin

ABSTRACTThe formation and annealing of buried damage layers in hydrogen implanted N-type float zone <111> silicon has been studied by Rutherford Backscattering/ion channeling and cross-section transmission electron microscopy. Implantation with 50 keV or 75 keV H+ ions was conducted at temperatures of 95K, 300K and 800K at fluences of 2×1017 H+/cm2, 8×1017 H+/cm2 and 1×1018 H+/cm2. Post implantation annealing was conducted at temperatures up to 800K. The results show a temperature dependent transition from a highly hydrogen doped amorphous zone bounded by strongly diffracting (TEM) 2–5 nm diameter defects for implantation at 95K to a crystalline microstructure containing small dislocation loops and ∼40% of the implanted hydrogen for implantation at 300K. Defect production and annealing and hydrogen trapping in the damage zone are shown to depend on the relative implantation and post implantation annealing temperatures.


2000 ◽  
Vol 610 ◽  
Author(s):  
P. H. Keys ◽  
R. Brindos ◽  
V. Krishnamoorthy ◽  
M. Puga-Lambers ◽  
K. S. Jones ◽  
...  

AbstractThe release of interstitials from extended defects after ion implantation acts as a driving force behind transient enhanced diffusion (TED). Implantation of Si+ ions into regions of phosphorus-doped silicon provides experimental insight into the interaction of silicon interstitials and dopant atoms during primary damage annealing. The presence of phosphorus influences the morphology of secondary defects during initial nucleation. Transmission electron microscopy (TEM) is used to differentiate between defect types and quantify the interstitials trapped in extended defects. This analysis reveals that phosphorus results in a reduction of interstitials trapped in observable extended defects. The interstitial flux released from the implanted region is also affected by the phosphorus doping. This phenomenon is closely studied using secondary ion mass spectrometry (SIMS) to monitor diffusion enhancements of dopant layers. Shifts in diffused dopant profiles are correlated with the different morphologies of the extended defects and the decay of the silicon interstitial supersaturation. This correlation is used to understand the interaction of excess silicon interstitials with phosphorus atoms.


Sign in / Sign up

Export Citation Format

Share Document