Composite Materials with Adjustable Thermal Expansion for Electronic Applications

1996 ◽  
Vol 445 ◽  
Author(s):  
J. D. Shi ◽  
Z. J. Pu ◽  
K. ‐H. Wu ◽  
G. Larkins

AbstractIn this paper, we discuss a newly characterized compound, ZrW2Og, that has been introduced into the composite materials with an adjustable and low thermal expansion for electronic applications. Offering a negative coefficient of thermal expansion (CTE) of approximate ‐9xlO–6/°C in a large temperature range, ZrW2Og was used as a particle filler in polymer‐matrix composites. The paper presents two kinds of composites, that is, polyester and epoxy with various volume fractions of ZrW20g. The CTEs of the polyester/ZrW2Og and epoxy/ZrW2Og composites have been proven adjustable in the ranges of 94 to 56x10–6 /°C and 54 to 18х 10–6 /°C, respectively, with ZrW2Og filler from 0 to 30 vol%. In addition, the analysis about the interfaces between the matrices and filler indicated that the interfaces may be beneficial to reduce the overall thermal expansion of the composites. The methods to further decrease composite CTEs are also discussed.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Raphael Olabanji Ogunleye ◽  
Sona Rusnakova

This review examines various studies on reducing tensile stresses generated in a polymer matrix composite without increasing the mass or dimension of the material. The sources of residual stresses and their impacts on the developed composite were identified, and the different techniques used in limiting residual stresses were also discussed. Furthermore, the review elaborates on fibre-prestressing techniques based on elastically (EPPMC) and viscoelastically (VPPMC) prestressed polymer matrix composites, while advantages and limitations associated with EPPMC and VPPMC methods are also explained. The report shows that tensile residual stresses are induced in a polymer matrix composite during production as a result of unequal expansion, moisture absorption and chemical shrinkage; their manifestations have detrimental effects on the mechanical properties of the polymer composite. Both EPPMC and VPPMC have great influence in reducing residual stresses in the polymer matrix and thereby improving the mechanical properties of composite materials. The reports from this study provide some basis for selecting a suitable technique for prestressing as well as measuring residual stresses in composite materials.


2007 ◽  
Vol 22 (10) ◽  
pp. 2711-2718 ◽  
Author(s):  
Y.B. Tang ◽  
Y.Q. Liu ◽  
C.H. Sun ◽  
H.T. Cong

Based on the synthesis of a sufficient amount of AlN nanowires (AlN-NWs), AlN-NWs/Al composites with homogenously distributed AlN-NWs were fabricated. Microstructural observations reveal that the interface between AlN-NWs and Al matrix is clean and bonded well, and no interfacial reaction product was formed at the nanowire-matrix boundary. Mechanical properties including yield and tensile strength of the composites were improved with AlN-NWs volume fraction changing from 5 to 15 vol%, and the maximum yield and tensile strengths of the composite were about 6 and 5 times, respectively, as high as those of Al matrix. Meanwhile, AlN-NWs effectively decreased the coefficient of thermal expansion (CTE) of the composites, and the CTE of 15 vol% composite was about one half that of Al matrix. The results obtained suggest that AlN nanowire is a promising reinforcement for optimizing the mechanical and thermal properties of metal matrix composites.


2018 ◽  
Author(s):  
DC Pham

Applications of polymer matrix composites are growing in aerospace and offshore industries due to the light-weight and good mechanical properties of composite materials. The design of composite materials can be made at macroscopic level in which the composite mechanical properties can be tailored to offer the most desired performance of composite structures. Understanding on mechanical behavior of the composite material may require detailed investigations at the microscopic level involving the behaviour of the composite constituents such as the fiber, the polymer matrix and the fiber/matrix interface under macroscopic loads. Composite failure criteria are often employed to evaluate the failure of composite material and its constituents. Computational damage models can be then developed to reflect the stiffness reduction of the material once damage at the macro- and micro- scales of the composite is indicated. The successful prediction of composite structures relies on consistent computational models which can capture the mechanical behaviour of composite materials at different length scales.


Author(s):  
Ru-Min Wang ◽  
Shui-Rong Zheng ◽  
Ya-Ping Zheng

Sign in / Sign up

Export Citation Format

Share Document