GaInP Selective Area Epitaxy for Heterojunction Bipolar Transistor Applications

1996 ◽  
Vol 448 ◽  
Author(s):  
S. H. PARK ◽  
S.-L. FU ◽  
P. K. L. YU ◽  
P. M. ASBECK

AbstractA study of selective area epitaxy (SAE) of GalnP lattice matched to GaAs is presented. The selectively regrown GaInP is used as the emitter of a novel heterojunction bipolar transistor (HBT) device structure. Successful SAE of GalnP on both dark field (mostly covered) and light field (mostly open) SiO2 masks is compared. To characterize the critical regrown heterojunction, diodes and HBTs were fabricated and measured. It is found that a pre-growth pause of either TEGa or PH3 results in forward bias characteristics with low leakage and an ideality factor of ~1.25, indicating low interfacial defect density. Non-self aligned regrown emitter HBTs grown with a dark field mask scheme have been fabricated. Devices with an emitter area of 3x12 μm exhibit small signal current gain up to 80 with an fT and fMAX of 22 GHz and 18 GHz, respectively. To further improve the performance of these devices, a structure with a self-aligned refractory metal base contact and light field regrowth is proposed.

2000 ◽  
Vol 88 (3) ◽  
pp. 1600-1605 ◽  
Author(s):  
Hiroki Sugiyama ◽  
Noriyuki Watanabe ◽  
Kazuo Watanabe ◽  
Takashi Kobayashi ◽  
Kazumi Wada

2001 ◽  
Vol 680 ◽  
Author(s):  
Yumin Zhang ◽  
P. Paul Ruden

ABSTRACTA novel hybrid model and simulation results for an advanced, graded base AlGaN/GaN heterojunction bipolar transistor structure are presented. The base of the n-p-n HBT examined has two parts, a linearly graded AlGaN layer on the emitter side and a heavily p-doped GaN layer on the collector side. In the hybrid model developed here the potential profile is first calculated self-consistently in the biased state taking into account ionized impurity charges, polarization charges, and majority carrier charges. The minority carrier transport is examined subsequently. Injection of electrons from the emitter is modeled as a thermionic emission process. The minority electron transport process in the graded region is drift-dominated due to the large built-in effective field strength. In the low-field GaN layer of the base, electron transport is assumed to be diffusion-dominated. High-level injection effects are modeled in the framework of the Gummel-Poon model. Example structure design parameters are presented and it is found that the calculated current gain can be greater than 25, with a collector current density of 104A/cm2.


1996 ◽  
Vol 421 ◽  
Author(s):  
N. Y. Li ◽  
C. W. Tu

AbstractIn this study, we shall first report selective-area epitaxy (SAE) of GaAs by chemical beam epitaxy (CBE) using tris-dimethylaminoarsenic (TDMAAs), a safer alternative source to arsine (AsH3), as the group V source. With triethylgallium (TEGa) and TDMAAs, true selectivity of GaAs can be achieved at a growth temperature of 470°C, which is much lower than the 600°C in the case of using TEGa and arsenic (As4) or AsH3. Secondly, we apply SAE of carbon-doped AIGaAs/GaAs to a heterojunction bipolar transistor (HBT) with a regrown external base, which exhibits a better device performance. Finally, the etching effect and the etched/regrown interface of GaAs using TDMAAs will be discussed.


2008 ◽  
Vol 47-50 ◽  
pp. 383-386
Author(s):  
Jung Hui Tsai ◽  
Shao Yen Chiu ◽  
Wen Shiung Lour ◽  
Chien Ming Li ◽  
Yi Zhen Wu ◽  
...  

In this article, a novel InGaP/GaAs pnp δ-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a δ-doped sheet between two spacer layers at the emitter-base junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and an offset voltage of 100 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.


Author(s):  
Jihane Ouchrif ◽  
Abdennaceur Baghdad ◽  
Aicha Sshel ◽  
Abdelmajid Badri ◽  
Abdelhakim Ballouk

<p>Heterojunction Bipolar Transistors are being used increasingly in communication systems due to their electrical performances. They are considered as excellent electronic devices. This paper presents an investigation of the static current gain β based on two technological parameters related to the device geometry for InP/InGaAs Single Heterojunction Bipolar Transistor (SHBT). These parameters are the base width  and the emitter length . We used Silvaco’s TCAD tools to design the device structure, and to extract the static current gain β from I-V output characteristics figures. According to this investigation, we determined the optimal values of the examined parameters which allow obtaining the highest static current gain β.</p>


Sign in / Sign up

Export Citation Format

Share Document