Time and Ensemble Averaged Dynamic Light Scattering in Orthoterphenyl Above and Below the Glass Transition

1996 ◽  
Vol 455 ◽  
Author(s):  
D. L. Sidebottom ◽  
C. M. Sorensen

ABSTRACTWhile traditional dynamic light scattering is useful for following structural relaxation in the liquid, in the glassy domain the technique is limited by the ultimate patience of the experimentalist; i.e., the structural relaxation can not be measured when the experimental time scale is less than the structural relaxation time. Nevertheless, we show how useful information regarding structural relaxation can be accessed from light scattering in the glass using a novel ensemble-averaged technique. Dynamic light scattering (DLS) measurements performed on glass forming orthoterphenyl show an inequality between time and ensemble average correlation functions near and below the calorimetrie glass transition temperature, Tg, and hence demonstrate ergodicity breaking. Our ensemble averaged measurements provide a measure of the so-called non-ergodicity parameter, fq, below Tg. Our DLS results for orthoterphenyl indicate that the functional form for fq is consistent with Mode Coupling theory predictions, but occurs at the glass transition temperature, Tg≈243K, rather than at TC≈290K as observed in neutron scattering studies.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


2020 ◽  
Vol 22 (32) ◽  
pp. 17948-17959
Author(s):  
Hubert Hellwig ◽  
Andrzej Nowok ◽  
Jan Grzegorz Małecki ◽  
Piotr Kuś ◽  
Agnieszka Jędrzejowska ◽  
...  

The dielectric properties, glass transition temperature and molecular dynamics of thiacrown ethers are strongly dependent on the thiacrown ring type.


2003 ◽  
Vol 18 (3) ◽  
pp. 664-671 ◽  
Author(s):  
Y. Zhang ◽  
H. Tan ◽  
H. Z. Kong ◽  
B. Yao ◽  
Y. Li

A eutectic point in Pr-rich Pr-(Cu,Ni)-Al alloys was experimentally determined by measuring the solidus temperature (Tm) and liquidus temperature (T1). It was found that Pr68(Cu0.5Ni0.5)25Al7 (at.%) is at the eutectic composition in the pseudoternary Pr–(Cu0.5Ni0.5)–Al alloys. The alloy Pr68(Cu0.5Ni0.5)25Al7 exhibits better glass-forming ability (GFA) than the ternary eutectic alloy Pr68Cu25Al7. However, the best GFA was obtained at an off-eutectic composition (Pr54[Cu0.5Ni0.5]30Al16) in the Pr–(Cu0.5Ni0.5)–Al alloys, which can be formed in fully amorphous rods with diameter of 1.5 mm by copper mold casting. Moreover, the glass-transition temperature Tg increases quickly (from 367 to 522 K) with the increasing of the Al content (from 3 to 27 at.%). The deviation of the best GFA composition from the eutectic point [Pr68(Cu0.5Ni0.5)25Al7] was explained in terms of the asymmetric coupled eutectic zone, the competition between growth of crystalline phase and formation of amorphous, and the higher glass-transition temperature Tg on the hypereutectic side.


Sign in / Sign up

Export Citation Format

Share Document