A Kinetic Model for the Stability of the Spent Fuel Matrix Under Oxic Conditions: Model Development Against Experimental Evidence

1996 ◽  
Vol 465 ◽  
Author(s):  
Jordi Bruno ◽  
E. Cera ◽  
L. Duro ◽  
T. E. Eriksen ◽  
P. Sellin ◽  
...  

ABSTRACTA kinetic model recently developed [1] for the radiolytically induced oxidative dissolution of the spent fuel matrix is presented. This is based on experimental studies on the generation and evolution of radiolytic products in a closed system containing fragments of PWR-fuel [2]. The outcome of this model is currently being integrated in the present PA exercise being prepared by SKB. The calibration of the model against various experimental information and its predictive capabilities for the long term performance of the spent fuel matrix are presented.

2016 ◽  
Vol 80 (5) ◽  
pp. 765-780 ◽  
Author(s):  
P. Sengupta ◽  
J. Sanwal ◽  
N. L. Dudwadkar ◽  
S. C. Tripathi ◽  
P. M. Gandhi

AbstractStalagmites and stalactites, as observed within natural caves, may develop inside geological repositories during constructional and post-operational periods. It is therefore important to understand actinide sorption within such materials. Towards this, experimental studies were carried out with 233U, 238Np (VI), 238Np (IV), 239Pu and 241Am radiotracers using natural speleothem samples collected from the Dharamjali cave of the Kumaon Lesser Himalayas, India. Petrological/mineralogical studies showed that natural speleothems have three general domains: (1) columnar calcite; (2) microcrystalline calcite; and (3) botryoidal aragonite – each with ferruginous materials. Results showed that all domains of speleothems can take up >99% actinides, irrespective of valence state and pH (1–6 range) of the solution. However, distribution coefficients were found to be at a maximum in aragonite for most of the actinides. Such data are very important for long-term performance and safety assessments of the deep geological repositories planned for the disposal of high-level nuclear wastes.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Abd El Halim Omar Abd El Halim ◽  
Amir Omar Abd El Halim ◽  
Moustafa Awadalla ◽  
Mohamed Adel Hassanin

Asphalt pavements have been compacted using steel drum rollers for a century. However, the problems that are observed today on these pavements are universal with no solution in sight. Intensive research work has been invested to identify the mechanisms that cause these problems. A recent development was the introduction of SuperPave mix design, GP asphalt cements, and the use of reinforcing elements ranging from polymer to steel bars. Yet it seems that none of these solutions have succeeded in eliminating any of the old problems. The pavements suffer from serious distresses regardless of the geographic location of the pavements and its design, materials, traffic loads, and climate condition. This paper presents a new approach to deal with the problems facing the asphalt pavements. While the research efforts to date concentrated on materials-related solutions, this paper identifies conventional compaction equipment as the cause of many problems observed on the pavements. The paper provides the development of the new Asphalt Multi-Integrated Roller, AMIR, and discusses new developments leading to a number of commercial field trials on several Ontario highways. The paper concludes that current compactors must be replaced with soft flat plates in order to achieve the required specifications for long term performance.


1986 ◽  
Vol 70 ◽  
Author(s):  
D. R. Willett ◽  
D. P. Tanner ◽  
G. Mchenry

ABSTRACTVariation of environmental conditions during light soaking of thin film silicon:hydrogen alloy (TFS) solar cells can have measurable effect on durability. Such sensitivity must be considered in optimizing processes for maximizing long-term performance. This paper will describe the effects of operating temperature, light intensity, operating bias, and duration of light soaking on the stability of TFS p-i-n solar cells.


1983 ◽  
Vol 26 ◽  
Author(s):  
Thomas H. Pigford

ABSTRACTThis study was conducted for the U. S. Department of Energy by the Waste Isolation Systems Panel appointed by the National Academies of Science and Engineering. The panel was charged to review the alternative technologies available for Isolating of radioactive waste in mined geologic repositories, evaluate the performance benefits from these technologles as potential elements of a waste Isolation system, and identify appropriate technical criteria for satisfactory long-term performance of a geologic repository. Conceptual repositories in basalt, granite, salt, and tuff were considered. Site-specific data on geology, hydrology, and geochemical properties were evaluated and used to define parameters for estimating long-term environmental releases, supplemented when necessary by generic properties.The technology for solid waste forms and waste packages was reviewed and evaluated. Borosilicate glass and unreprocessed spent fuel are the waste forms appropriate for further testing and for repository designs. Testing in a simulated repository environment is necessary to develop an adeauate prediction of the long term performance of waste packages in a geologic repository. Back-up research and development on alternative waste forms should be continued. The expected functions of backfill placed between the rock and waste package need clearer definition and validation.The overall criterion to be used by federal agencies in designing a geologic waste-isolation system and in evaluating its nerformance has not yet been specified. As a guideline, the panel selected an average annual dose of 10-4 sieverts to a maximally exposed individual at any future time, if the exposure is from expected events such as the slow dissolution of waste solids in wet-rock repositories and the groundwater transport of dissolved radionuclides to the biosphere. Risks from unexpected events such as human intrusion were not evaluated.Calculations were made of the long-term isolation and environmental releases for conceptual repositories in basalt, granite, salt, and tuff. The major contributors to geologic isolation are the slow dissolution of key radioelements as limited by solubility and by diffusion and convection in groundwater surrounding the waste solids, long water travel times from the waste to the environment, and sorption retardation in the media surrounding the repository. Dilution by surface water can reduce the individual radiation exposures that can result from the small fraction of the waste radioactivity that may ultimately reach the environment. Estimates of environmental releases and individual doses were made both for unreprocessed spent fuel and for reprocessing wastes.Accelerated dissolution of waste exposed to groundwater during the period of repository heating was also considered. Long-term environmental releases of radioactivity from some repositories were calculated to cause doses to maximally exposed individuals that are several orders of magnitude below the Individual dose criterion of 10-4 Sieverts per year. Other conceptual repositories were found to not meet the individual dose criterion, although these repositories could still meet the radioactivity release limits in the standard proposed by the Environmental Protection Agency.The technology for geologic waste disposal has advanced to the state of a preliminary technical plan, suitable for testing, verification, and for pllot-facility confirmation. The waste Isolation program needs a reliable prediction of long-term performance that will serve as a basis for final design, construction, licensing, and waste emplacement.


2002 ◽  
Vol 3 (7-8) ◽  
pp. 879-889 ◽  
Author(s):  
Wernt Brewitz ◽  
Ulrich Noseck

One of the factors that affect the long term performance of a structure is the strength of the underlying soil strata. Presence of weak soil strata beneath the structure will affect the structural integrity. So, enhancing the engineering properties of the weak soil results in the betterment of bearing capacity of the soil. Nowadays, for improving the stability of the weak soil, various soil stabilization techniques are adopted. This paper presents an investigation of using alccofine as a soil stabilizing agent. Variation in shear strength parameters and compaction parameters of the soil is studied by adding different percentages of alccofine 1101 such as 1%, 2%, 3%, 4%, and 5%. Test results revealed that at the optimal rate of alccofine 1101, the shear strength characteristic is increased by 53.71% after a curing period of 3 days.


2017 ◽  
Author(s):  
Ahmed W. Shehata ◽  
Erik J. Scheme ◽  
Jonathon W. Sensinger

AbstractOngoing developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user, but have overlooked the effect of this feedback on internal model development, which is key to improving long-term performance. In this work, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach), and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable-difference. The performance of both strategies was also evaluated using a Schmidt’s style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency (p < 0.05), raw control with raw feedback resulted in stronger internal model development (p < 0.05), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.


2005 ◽  
Vol 893 ◽  
Author(s):  
Karrie-Ann Kubatko ◽  
Daniel Unruh ◽  
Peter C. Burns

AbstractWhile the majority of studies of alteration of UO2 and commercial spent nuclear fuel under simulated geological repository conditions have emphasized the importance of uranyl oxide hydrates and uranyl silicates, the influence of peroxide on repository performance has been largely overlooked. There is considerable evidence that uranyl peroxides will be important alteration phases of nuclear waste, and that these phases may impact the long-term performance of a geologic repository such as Yucca Mountain. Here we report the thermodynamics and kinetics of becquerelite, Ca[(UO2)6O4(OH)6](H2O)8, in the presence of solutions containing hydrogen peroxide. Thermodynamic calculations reveal that in solutions containing 3.5 × 10-6 M hydrogen peroxide, studtite is thermodynamically favorable over becquerelite at 298 K. To access the kinetics of this reaction, batch experiments were conducted by the reaction of becquerelite and solutions containing hydrogen peroxide. In the presence of 0.1 M hydrogen peroxide, becquerelite altered to studtite within eight hours.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document