Search for Explaining the Staebler-Wronski Effect

1997 ◽  
Vol 467 ◽  
Author(s):  
H. Fritzsche ◽  
Tucson Az

ABSTRACTFor twenty years we searched to understand the Staebler-Wronski effect (SWE). New results continue to emerge which invalidate prior interpretations. Recent evidence shows that the SWE is not associated with impurities. Long-range hydrogen diffusion is ruled out because the SWE occurs with comparable efficiency between 400K and the lowest temperatures. Nonradiative geminate recombinations might be important since high fields reduce the SWE significantly. It disappears when the bandgap or the photon energy falls below a critical value. The creation of a metastable density of dangling bond defects has been considered to be its sole manifestation. However, there is mounting evidence for light-induced structural changes which extend throughout the material. The weak bond breaking model emerges as the only viable explanation of the SWE if the expected spatial correlation between defects and hydrogen is destroyed by subsequent recombination events. The SWE is reduced by a favorable microstructure and low hydrogen content. It is suggested that defect pairs have larger recombination coefficients than isolated defects.

2001 ◽  
Vol 664 ◽  
Author(s):  
Hyeonsik M. Cheong ◽  
Se-Hee Lee ◽  
Brent Nelson ◽  
Angelo Mascarenhas ◽  
Sayten K. Deb

ABSTRACTWe demonstrate that one can detect minuscule amounts of hydrogen diffusion out of a-Si:H under illumination at room temperature, by monitoring the changes in the Raman spectrum of amorphous tungsten oxide as a function of illumination. The Staebler-Wronski effect, the light-induce creation of metastable defects in hydrogenated amorphous silicon (a-Si:H), has been one of the major problems that has limited the performance of such devices as solar cells. Recently, Branz suggested the hydrogen collision model that can explain many aspects of the Staebler-Wronski effect. One of the main predictions of this model is that the photogenerated mobile hydrogen atoms can move a long distance at room temperature. However, light-induced hydrogen motion in a-Si:H has not been experimentally observed at room temperature. We utilized the high sensitivity of the Raman spectrum of electrochromic a-WO3 to hydrogen insertion to probe the long-range motion of hydrogen at room temperature. We deposited a thin (200 nm) layer of a-WO3 on top of a-Si:H, and under illumination, a change in the Raman spectrum was detected. By comparing the Raman signal changes with those for control experiments where hydrogen is electrochemically inserted into a-WO3, we can estimate semiquantitatively the amount of hydrogen that diffuses out of the a-Si:H layer.


1991 ◽  
Vol 219 ◽  
Author(s):  
R. Biswas ◽  
I. Kwon ◽  
C. M. Soukoulis

ABSTRACTThe mechanisms of the Staebler-Wronski effect are investigated by examining the stability of computer-generated amorphous hydrogenated silicon networks with a molecular dynamics approach. Models with both monohydride and dihydride species are examined. A new Si-H interatomic potential is utilized for the simulations. A localized excitation is used to model the non-radiative transfer of photo-excited carrier energy to the lattice. The a-Si:H model with only monohydride species is stable to bond-breaking excitations. The a-Si:H model with both monohydride and dihydride species is less stable and exhibits, after local excitations, higher energy dangling bond states that can however be easily annealed away.


2012 ◽  
Vol 1426 ◽  
pp. 57-62
Author(s):  
Ka-Hyun Kim ◽  
Erik V. Johnson ◽  
Samir Kasouit ◽  
Pere Roca i Cabarrocas

ABSTRACTHydrogenated polymorphous silicon (pm-Si:H) is one of the most promising candidates for a stable top cell material in multi-junction thin film solar cells. Solar cells using pm-Si:H as their absorbing layer show very interesting degradation kinetics when compared to hydrogenated amorphous silicon (a-Si:H), summarized by macroscopic structural changes and irreversible changes in solar cell characteristics, while nevertheless preserving a higher stabilized efficiency. Notably, pm-Si:H solar cells, once degraded, respond to neither annealing nor further light-soaking. Such results suggest a device degradation mechanism including structural changes, active hydrogen motion, and interface delamination mediated by fast hydrogen diffusion and accumulation at the interface. Interestingly, a similar behavior was reported for a-Si:H solar cells under severe light soaking conditions (at 350 °C or under 50 suns) while pm-Si:H solar cells show such behavior under 1 sun at 40 °C.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 371
Author(s):  
Koua

The Mn4CaO5 cluster site in the oxygen-evolving complex (OEC) of photosystem II (PSII) undergoes structural perturbations, such as those induced by Ca2+/Sr2+ exchanges or Ca/Mn removal. These changes have been known to induce long-range positive shifts (between +30 and +150 mV) in the redox potential of the primary quinone electron acceptor plastoquinone A (QA), which is located 40 Å from the OEC. To further investigate these effects, we reanalyzed the crystal structure of Sr-PSII resolved at 2.1 Å and compared it with the native Ca-PSII resolved at 1.9 Å. Here, we focus on the acceptor site and report the possible long-range interactions between the donor, Mn4Ca(Sr)O5 cluster, and acceptor sites.


1995 ◽  
Vol 10 (4) ◽  
pp. 1024-1027 ◽  
Author(s):  
C. Bourgerette ◽  
A. Oberlin ◽  
M. Inagaki

Various polyimide films (Kapton, Upilex, Novax, and PPT) were carbonized and graphitized up to 3000 °C. They were studied by optical and electron microscopies. All films retaining oxygen as a cross linker over 1000 °C, i.e., Kapton, Upilex, and Novax, graphitize as anthracites (high rank coals) do. They get a long range statistical orientation parallel to the film plane with a nanotexture of flattened pores. Graphitization is both sudden and perfect above 2100 °C when the pore walls break. Since oxygen is released at 1000 °C, the film PPT behaves as a compact nonporous graphitizing carbon (orientation parallel to the film plane). Thermal graphitization is progressive and begins at a higher temperature.


2019 ◽  
Vol 412 ◽  
pp. 336-343 ◽  
Author(s):  
Shiyao Zheng ◽  
Chaoyu Hong ◽  
Xiaoyun Guan ◽  
Yuxuan Xiang ◽  
Xiangsi Liu ◽  
...  

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
A. González-Tudela ◽  
J. I. Cirac

Quantum emitters coupled to structured photonic reservoirs experience unconventional individual and collective dynamics emerging from the interplay between dimensionality and non-trivial photon energy dispersions. In this work, we systematically study several paradigmatic three dimensional structured baths with qualitative differences in their bath spectral density. We discover non-Markovian individual and collective effects absent in simplified descriptions, such as perfect subradiant states or long-range anisotropic interactions. Furthermore, we show how to implement these models using only cold atoms in state-dependent optical lattices and show how this unconventional dynamics can be observed with these systems.


2018 ◽  
Vol 114 (3) ◽  
pp. 30a
Author(s):  
Trent Newman ◽  
Bruno G. Beltran ◽  
James McGehee ◽  
Cori Cahoon ◽  
Daniel Elnatan ◽  
...  

2016 ◽  
Vol 213 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Anne-Sophie Thomas-Claudepierre ◽  
Isabelle Robert ◽  
Pedro P. Rocha ◽  
Ramya Raviram ◽  
Ebe Schiavo ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.


2000 ◽  
Vol 27 (3) ◽  
pp. 279 ◽  
Author(s):  
G. Garab ◽  
L. Mustárdy

In higher plants and green algae two types of thylakoids are distinguished, granum (stacked) and stroma (unstacked) thylakoids. They form a three-dimensional (3D) network with large lateral heterogeneity: photosystem II (PSII) and the associated main chlorophyll a/b light-harvesting complex (LHCII) are found predominantly in the stacked region, while PSI and LHCI are located mainly in the unstacked region of the membrane. This picture emerged from the discovery of the physical separation of the two photosystems (Boardman and Anderson 1964). Granal chloroplasts possess significant flexibility, which is essential for optimizing the photosynthetic machinery under various environmental conditions. However, our understanding concerning the assembly, structural dynamics and regulatory functions of grana is far from being complete. In this paper we overview the significance of the three-dimensional structure of grana in the absorption properties, ionic equilibrations, and in the diffusion of membrane components between the stacked and unstacked regions. Further, we discuss the role of chiral macrodomains in the grana. Lateral heterogeneity of thylakoid membranes is proposed to be a consequence of the formation of macrodomains constituted of LHCII and PSII; their long range order permits long distance migration of excitation energy, which explains the energetic connectivity of PSII particles. The ability of macrodomains to undergo light-induced reversible structural changes lends structural flexibility to the granum. In purified LHCII, which has also been shown to form stacked lamellar aggregates with long range chiral order, excitation energy migrates for large distances; these macroaggregates are also capable of undergoing light-induced reversible structural changes and fluorescence quenching. Hence, some basic properties of grana appear to originate from its main constituent, the LHCII.


Sign in / Sign up

Export Citation Format

Share Document