Preparation of C60 Charge Transfer Complexes with Organic Donor Molecules and Alkali Doping

1997 ◽  
Vol 488 ◽  
Author(s):  
A. Otsuka ◽  
G. Saito ◽  
S. Hirate ◽  
S. Pac ◽  
T. Ishida ◽  
...  

AbstractSolid charge transfer (CT) complexes of C60 with TSeC1-TTF, EDT-TTF, EOET-TTF, and TDAP (1, 3, 6, 8-tetrakis(dimethylamino)pyrene) were newly prepared. All the obtained black crystals were proved to be neutral despite of their rather strong electron donor ability. Lattice parameters of them except for EOET-TTF complex were determined together with those of HMTTeF·C60, which had been reported with different values. Rubidium doping under a mild condition was examined on the complexes of TDAP, EOET-TTF, HMTTeF, BEDT-TTF, hydroquinone and ferrocene to search for the superconductors of new crystal and electronic structures. Among them, the rubidium-doped ferrocene complex easily showed an apparent superconducting signal in SQUID magnetization measurements. The doping effect on these CT complexes is compared to that on OMTTF complex.

2001 ◽  
Vol 11 (3) ◽  
pp. 723-735 ◽  
Author(s):  
Gunzi Saito ◽  
Seiji Hirate ◽  
Kazukuni Nishimura ◽  
Hideki Yamochi

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2039
Author(s):  
Gamal A. E. Mostafa ◽  
Ahmed Bakheit ◽  
Najla AlMasoud ◽  
Haitham AlRabiah

The reactions of ketotifen fumarate (KT) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π acceptors to form charge transfer (CT) complexes were evaluated in this study. Experimental and theoretical approaches, including density function theory (DFT), were used to obtain the comprehensive, reliable, and accurate structure elucidation of the developed CT complexes. The CT complexes (KT-DDQ and KT-TCNQ) were monitored at 485 and 843 nm, respectively, and the calibration curve ranged from 10 to 100 ppm for KT-DDQ and 2.5 to 40 ppm for KT-TCNQ. The spectrophotometric methods were validated for the determination of KT, and the stability of the CT complexes was assessed by studying the corresponding spectroscopic physical parameters. The molar ratio of KT:DDQ and KT:TCNQ was estimated at 1:1 using Job’s method, which was compatible with the results obtained using the Benesi–Hildebrand equation. Using these complexes, the quantitative determination of KT in its dosage form was successful.


2002 ◽  
Vol 12 (9) ◽  
pp. 357-360
Author(s):  
M. Buron ◽  
E. Collet ◽  
M. H. Lemée-Cailleau ◽  
H. Cailleau ◽  
T. Luty ◽  
...  

Mixed-stack charge-transfer (CT) complexes undergoing the neutral-ionic (N-I) phase transition are molecular materials formed of stacks where electron donor (D) and acceptor (A) molecules regularly alternate. In the N phase, the CT is low and molecules are situated on inversion centers, while in the I phase, the increase of CT is accompanied by a lattice distortion (dimerization process and symmetry breaking). The one-dimensional (1D) architecture triggers the chain multistability by stabilizing lattice-relaxed (LR)-CT excitations ...D° A° D° A° $(D^+A^-)(D^+A^-)(D^+A^-)$ Do A" D° A° D°... These 1D nano-scale objects are at the heart of the equilibrium N-I phase transition and govern the fascinating physical properties such as giant dielectric response or photo-induced phase transformations. In this contribution, the 1D character of these critical excitations will be demonstrated by direct observation using high resolution X-Ray diffraction.


1987 ◽  
Vol 42 (3) ◽  
pp. 284-288 ◽  
Author(s):  
Aboul-fetouh E. Mourad

The charge-transfer (CT) complexes of some N-arylcarbamates as donors with a number of π-acceptors have been studied spectrophotometrically. The Lewis basicities of the N-arylcarbamates as well as the types of interactions are discussed. The 1H-NMR spectra of some CT complexes with both 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and 7,7,8,8 tetracyanoquinodimethane (TCNQ) indicate a decrease of the electron density on the donor part of the complex.


1984 ◽  
Vol 39 (12) ◽  
pp. 1274-1278 ◽  
Author(s):  
M. H. Abdel-Kader ◽  
R. M. Issa ◽  
M. M. Ayad ◽  
M. S. Abdel-Mottaleb

The charge transfer complexes of 2,3- (I) and 2,6-Dimethylnaphthalenes (II) as electron donors with tri- and di-nitrobenzenes as electron acceptors are prepared and investigated by element analysis, IR. 1H nmr and electronic absorption spectroscopy. The results showed that I yields CT complexes of 1:1 type only while II is capable of forming 1 : 1 and 1 : 2 (donor: acceptor) compounds. The spectral characteristics of the CT complexes are pointed out and discussed. The difference in the donor behaviour between I and II is explained in the light of PPP-MO calculations.


1994 ◽  
Vol 116 (18) ◽  
pp. 8188-8199 ◽  
Author(s):  
Ian R. Gould ◽  
Ralph H. Young ◽  
Leonard J. Mueller ◽  
A. C. Albrecht ◽  
Samir Farid

1974 ◽  
Vol 29 (8) ◽  
pp. 1216-1228 ◽  
Author(s):  
H. Möhwald ◽  
E. Sackmann

Homogeneously doped crystals of charge transfer (CT-) complexes were grown by incorporating aromatic guest donors in host CT-crystals. The host crystals contained 1,2.4,5-tetracyanobenzene (TCNB) as acceptor and deuterated aromatic electron donors. By using such doped crystals CT complexes in a well defined configuration may be studied. The triplet states of the guest complexes were used as ESR spectroscopic probes in order to determine the molecular arrangement in the host lattice. The zero-field-splitting (ZFS) parameters, D and E, of the triplet energy traps were determined and the degree of electron derealization in the triplet state was calculated from these values. In some cases a very strong guest host interaction (multicomplex formation) was established. A method for the determination of CT-triplet energies is described (accuracy 200 cm-1) . The phosphorescence spectrum of the anthracene-TCNB complex was obtained from the delayed emission spectra of different anthracene doped CT-crystals. The vibronic structure is identical to that of anthracene, while the O-O-band of the complex is blue shifted by 600 cm-1. It is shown that the undoped anthracene-TCNB crystal exhibits P-type delayed fluorescence and that the triplet exciton diffusion in this crystal is nearly temperature independent. In the undoped biphenyl-TCNB crystal E-type delayed fluorescence originating from the thermal depopulation of the mobile triplet excitons is established. The remarkable differences of the two types of triplet excitons are interpreted in terms of the different polarity in the triplet states of the two CT-crystals.


2014 ◽  
Vol 67 (12) ◽  
pp. 1866 ◽  
Author(s):  
Benjamin L. Harris ◽  
Jonathan M. White

Eight ester and ether derivatives of propargyl alcohol with varying electron demand were structurally characterised using low temperature X-ray crystallography, these were combined with seven derivatives obtained from the Cambridge Structural Database. Variable oxygen probe analysis of these derivatives provided evidence that the ethynyl substituent is a relatively weak π-electron donor, and is a slightly less effective donor than the C–C bond of an ethyl substituent.


2015 ◽  
Vol 21 (43) ◽  
pp. 15405-15411 ◽  
Author(s):  
Tomohito Morosaki ◽  
Wei-Wei Wang ◽  
Shigeru Nagase ◽  
Takayoshi Fujii

Sign in / Sign up

Export Citation Format

Share Document