Charge Transfer Complexes of Aromatic Nitrocompounds with Disubstituted Naphthalenes. I.Spectroscopic Investigation of the Donor Behaviour of the 2,6- and 23-Dimethylnaphthalene

1984 ◽  
Vol 39 (12) ◽  
pp. 1274-1278 ◽  
Author(s):  
M. H. Abdel-Kader ◽  
R. M. Issa ◽  
M. M. Ayad ◽  
M. S. Abdel-Mottaleb

The charge transfer complexes of 2,3- (I) and 2,6-Dimethylnaphthalenes (II) as electron donors with tri- and di-nitrobenzenes as electron acceptors are prepared and investigated by element analysis, IR. 1H nmr and electronic absorption spectroscopy. The results showed that I yields CT complexes of 1:1 type only while II is capable of forming 1 : 1 and 1 : 2 (donor: acceptor) compounds. The spectral characteristics of the CT complexes are pointed out and discussed. The difference in the donor behaviour between I and II is explained in the light of PPP-MO calculations.

1987 ◽  
Vol 42 (3) ◽  
pp. 284-288 ◽  
Author(s):  
Aboul-fetouh E. Mourad

The charge-transfer (CT) complexes of some N-arylcarbamates as donors with a number of π-acceptors have been studied spectrophotometrically. The Lewis basicities of the N-arylcarbamates as well as the types of interactions are discussed. The 1H-NMR spectra of some CT complexes with both 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and 7,7,8,8 tetracyanoquinodimethane (TCNQ) indicate a decrease of the electron density on the donor part of the complex.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2039
Author(s):  
Gamal A. E. Mostafa ◽  
Ahmed Bakheit ◽  
Najla AlMasoud ◽  
Haitham AlRabiah

The reactions of ketotifen fumarate (KT) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as π acceptors to form charge transfer (CT) complexes were evaluated in this study. Experimental and theoretical approaches, including density function theory (DFT), were used to obtain the comprehensive, reliable, and accurate structure elucidation of the developed CT complexes. The CT complexes (KT-DDQ and KT-TCNQ) were monitored at 485 and 843 nm, respectively, and the calibration curve ranged from 10 to 100 ppm for KT-DDQ and 2.5 to 40 ppm for KT-TCNQ. The spectrophotometric methods were validated for the determination of KT, and the stability of the CT complexes was assessed by studying the corresponding spectroscopic physical parameters. The molar ratio of KT:DDQ and KT:TCNQ was estimated at 1:1 using Job’s method, which was compatible with the results obtained using the Benesi–Hildebrand equation. Using these complexes, the quantitative determination of KT in its dosage form was successful.


1990 ◽  
Vol 55 (9) ◽  
pp. 2131-2137
Author(s):  
Mahboob Mohammad ◽  
Ather Yaseen Khan ◽  
Tariq Mahmood ◽  
Ismat Fatima ◽  
Riffat Shaheen ◽  
...  

The 1H NMR spectra of the charge-transfer complex of 1-ethyl-4-methoxycarbonylpyridinium iodide have been recorded in various dipolar aprotic solvents. An attempt is made to interpret the chemical shifts in terms of Buckingham's reaction field equation for spherical cavities. A linear dependence has been found between the δ(2,6) values and the square of dielectric function for a spherical cavity, which confirms the validity of the Buckingham equation for this class of compounds.


CrystEngComm ◽  
2015 ◽  
Vol 17 (32) ◽  
pp. 6227-6235 ◽  
Author(s):  
Amparo Salmerón-Valverde ◽  
Sylvain Bernès

A series of solvated donor–acceptor organic complexes were shown to slowly release the lattice solvent while the degree of charge transfer decreases steadily. This behavior is not observed in the case of a hydrate.


2002 ◽  
Vol 12 (9) ◽  
pp. 357-360
Author(s):  
M. Buron ◽  
E. Collet ◽  
M. H. Lemée-Cailleau ◽  
H. Cailleau ◽  
T. Luty ◽  
...  

Mixed-stack charge-transfer (CT) complexes undergoing the neutral-ionic (N-I) phase transition are molecular materials formed of stacks where electron donor (D) and acceptor (A) molecules regularly alternate. In the N phase, the CT is low and molecules are situated on inversion centers, while in the I phase, the increase of CT is accompanied by a lattice distortion (dimerization process and symmetry breaking). The one-dimensional (1D) architecture triggers the chain multistability by stabilizing lattice-relaxed (LR)-CT excitations ...D° A° D° A° $(D^+A^-)(D^+A^-)(D^+A^-)$ Do A" D° A° D°... These 1D nano-scale objects are at the heart of the equilibrium N-I phase transition and govern the fascinating physical properties such as giant dielectric response or photo-induced phase transformations. In this contribution, the 1D character of these critical excitations will be demonstrated by direct observation using high resolution X-Ray diffraction.


2019 ◽  
Vol 25 (59) ◽  
pp. 13547-13565 ◽  
Author(s):  
Karlee P. Castro ◽  
Eric V. Bukovsky ◽  
Igor V. Kuvychko ◽  
Nicholas J. DeWeerd ◽  
Yu‐Sheng Chen ◽  
...  

1987 ◽  
Vol 42 (9) ◽  
pp. 1147-1152 ◽  
Author(s):  
Aboul-fetouh E. Mourad ◽  
Verena Lehne

Charge-transfer (CT) complexation between some [2.2]- and [2.2.2]paracyclophane-carbamates as donors with 2,3-dichloro-5.6-dicyanobenzoquinone (DDO ) as well as tetracyanoethylene (TCNE) as π-acceptors has been evidenced by VIS. 1H NMR and IR spectroscopy. The site of interaction in the two different donor systems was determined. The results reveal no contribution of the nitrogen lone pair electrons of the carbamate functional group in the CT complexation. and the interaction is mainly of π-π* type. In addition, the existence of the transannular electronic interactions in [2.2]paracyclophane derivatives is responsible for CT complex formation.


1974 ◽  
Vol 29 (8) ◽  
pp. 1216-1228 ◽  
Author(s):  
H. Möhwald ◽  
E. Sackmann

Homogeneously doped crystals of charge transfer (CT-) complexes were grown by incorporating aromatic guest donors in host CT-crystals. The host crystals contained 1,2.4,5-tetracyanobenzene (TCNB) as acceptor and deuterated aromatic electron donors. By using such doped crystals CT complexes in a well defined configuration may be studied. The triplet states of the guest complexes were used as ESR spectroscopic probes in order to determine the molecular arrangement in the host lattice. The zero-field-splitting (ZFS) parameters, D and E, of the triplet energy traps were determined and the degree of electron derealization in the triplet state was calculated from these values. In some cases a very strong guest host interaction (multicomplex formation) was established. A method for the determination of CT-triplet energies is described (accuracy 200 cm-1) . The phosphorescence spectrum of the anthracene-TCNB complex was obtained from the delayed emission spectra of different anthracene doped CT-crystals. The vibronic structure is identical to that of anthracene, while the O-O-band of the complex is blue shifted by 600 cm-1. It is shown that the undoped anthracene-TCNB crystal exhibits P-type delayed fluorescence and that the triplet exciton diffusion in this crystal is nearly temperature independent. In the undoped biphenyl-TCNB crystal E-type delayed fluorescence originating from the thermal depopulation of the mobile triplet excitons is established. The remarkable differences of the two types of triplet excitons are interpreted in terms of the different polarity in the triplet states of the two CT-crystals.


2020 ◽  
Vol 8 (43) ◽  
pp. 15199-15207
Author(s):  
Paul Beyer ◽  
Eduard Meister ◽  
Timo Florian ◽  
Alexander Generalov ◽  
Wolfgang Brütting ◽  
...  

Charge transfer complex (CPX) formation at a donor–acceptor interface reduces the amount of Fermi-level pinning induced interfacial charge transfer.


Sign in / Sign up

Export Citation Format

Share Document