Elasticity, Thermal Properties, and Molecular Dynamics Using Non-Empirical Tight-Binding

1997 ◽  
Vol 491 ◽  
Author(s):  
Ronald E. Cohen ◽  
Lars Stixrude ◽  
Evgeny Wasserman

ABSTRACTWe have further developed and applied a new non-empirical tight-binding total energy model to properties of Si, Xe, and Fe at high pressures. We have studied elasticity of various phases of each of these, demonstrating that the new model is applicable to a wide range of materials, including semiconductors, rare gases, and transition metals. We have used the particle-in-a-cell method to study the thermal equation of state of hep Fe and find excellent agreement with the shock equation of state. A molecular dynamics code has been developed based on this method, and we have studied the properties of Fe liquid at high pressures.

Author(s):  
K. Sunil ◽  
D. Ashwini ◽  
Vijay S. Sharma

We have used a method for determining volume dependence of the Grüneisen parameter in the Lindemann law to study the pressure dependence of melting temperatures in case of 10 metals viz. Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn. The reciprocal gamma relationship has been used to estimate the values of Grüneisen parameters at different volumes. The results for melting temperatures of metals at high pressures obtained in this study using the Lindemann law of melting are compared with the available experimental data and also with the values calculated from the instability model based on a thermal equation of state. The analytical model used in this study is much simpler than the accurate DFT calculations and molecular dynamics.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012118
Author(s):  
K V Khishchenko

Abstract An equation of state has been developed for rhodium in a wide range of changes in the specific volume and internal energy. The results of calculations of the thermodynamic characteristics of this metal are presented in comparison with the available experimental data at high pressures. This equation of state can be used in the numerical simulation of hydrodynamic processes under intense impulse influences on matter.


2008 ◽  
Vol 15 (3) ◽  
pp. 359-368 ◽  
Author(s):  
A. B. Kaplun ◽  
B. I. Kidyarov ◽  
A. B. Meshalkin ◽  
A. V. Shishkin

1997 ◽  
Vol 482 ◽  
Author(s):  
Derrick E. Boucher ◽  
Zoltán A. Gál ◽  
Gary G. DeLeo ◽  
W. Beall Fowler

AbstractThe electronic structure, geometry and energetics of Ga vacancy pairs and N vacancy pairs in both wurtzite and zincblende GaN are investigated via molecular dynamics (MD) simulations using an empirical tight-binding (TB) model with total energy capabilities and supercells containing up to 216 atoms. Our calculations suggest that, by pairing, N vacancies, which in isolation act as shallow donors, can lower their collective formation energy by about 5 eV. In doing so, however, these N vacancies lose their shallow-donor character as the lattice relaxes in response to this aggregation. Contrasting with the N vacancies, the Ga vacancies are found to retain their isolated shallow acceptor behavior and do not gain significant energy upon aggregation. The possible implications for larger aggregate defects are discussed.


1997 ◽  
Vol 491 ◽  
Author(s):  
Leo Miglio ◽  
Francesca Tavazza ◽  
Antonio Garbelli ◽  
Massimo Celino

ABSTRACTWe point out that the predictive power of tight binding potentials is not limited to obtaining fairly accurate total energy calculations and very satisfactory structural evolutions by molecular dynamics simulations. They also allow for a nice physical picture of the links between bonding and stability in different structures, which is particularly helpful in the case of binary suicides


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Javier V. Goicochea ◽  
Marcela Madrid ◽  
Cristina Amon

Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the ⟨100⟩ family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Vitaly B. Rogankov ◽  
Valeriy I. Levchenko

Despite considerable effort of experimentalists no reliable vapor-liquid coexistence at very small pressures and liquid-solid coexistence at high pressures have been until now observed in the working range of temperature 290<T/K<350 for ionic liquids. The measurements of high-pressure properties in low-temperature stable liquid are relatively scarce while the strong influence of their consistency on the phase equilibrium prediction is obvious. In this work we discuss the applicability of fluctuational-thermodynamic methodology and respective equation of state to correlate the properties of any (neutral, polar, ionic) liquids since our ultimate goal is the simple reference predictive model to describe vapor-liquid, liquid-liquid, and liquid-solid equilibria of mixtures containing above components. It is shown that the inconsistencies among existing volumetric measurements and the strong dependence of the mechanical and, especially, caloric derived properties on the shape of the functions chosen to fit the experimental data can be resolved in the framework of fluctuational-thermodynamic equation of state. To illustrate its results the comparison with the known experimental data for [bmim][BF4] and [bmim][PF6] as well as with the lattice-fluid equation of state and the methodology of thermodynamic integration is represented. It corroborates the thermodynamic consistency of predictions and excellent correlation of derived properties over the wide range of pressures 0<P/MPa<200.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 664
Author(s):  
Yuntian Wang ◽  
Xiangguo Zeng ◽  
Huayan Chen ◽  
Xin Yang ◽  
Fang Wang ◽  
...  

The objective of this study was to develop a micromechanical approach for determining the Mie–Grüneisen EOS parameters of iron under the Hugoniot states. The multiscale shock technique (MSST) coupled with molecular dynamics (MD) simulations was employed to describe the shocked Hugoniot relation of single-crystal (SC) and nanocrystalline (NC) iron under high pressures. The Mie–Grüneisen equation of state (EOS) parameters, the cold pressure (Pc), the cold energy (Ec), the Grüneisen coefficient (γ), and the melting temperature (Tm) are discussed. The error between SC and NC iron results was found to be less than 1.5%. Interestingly, the differences in Hugoniot state (PH) and the internal energy between SC and NC iron were insignificant, which shows that the effect of grain size (GS) under high pressures was not significant. The Pc and Ec of SC and NC iron calculated based on the Morse potential were almost the same with those calculated based on the Born–Mayer potential; however, those calculated based on the Born–Mayer potential were a little larger at high pressures. In addition, several empirical and theoretical models were compared for the calculation of γ and Tm. The Mie–Grüneisen EOSs were shown on the 3D contour space; the pressure obtained with the Hugoniot curves as the reference was larger than that obtained with the cold curves as the reference.


Sign in / Sign up

Export Citation Format

Share Document