High-Pressure, High-Temperature Syntheses of Super-Hard α-Rhombohedral Boron-rich Solids in the B-C-N-O

1997 ◽  
Vol 499 ◽  
Author(s):  
Hervé Hubert ◽  
Laurence A.J. Garvie ◽  
Bertrand Devouard ◽  
Paul F. McMillan

ABSTRACTWe prepared α-rhombohedral (α-rh.) B-rich materials in the B-C-N-O system at high-pressures and temperatures. Samples were synthesized using a multianvil device and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and parallel electron energy-loss spectroscopy (PEELS). The B-C-O compounds were obtained by reducing B2O3 with B, or mixtures of B and C between 1 to 10 GPa and 1200° and 1800° C In the B-O system we synthesized boron suboxide (nominally B6O) of high purity, crystallinity, and close to stoichiometric. Quantitative analyses give B6O0.95 and B6O0.77 for high-pressure and room-pressure samples, respectively. Between 4 to 5.5 GPa, B6O formed as macroscopic near-perfect regular icosahedra (to 30 μm in diameter). In the B-C-O system, intermediate phases were prepared showing evidence of solid solution between B4C and B6O. Boron carbide crystals, to 20 μm, containing a significant amount of O, typically B6C1.1O0.33 and B6C1.28O0.31, were grown for mixtures in which B and C were reacted with excess B2O3 at 7.5 GPa and 1700 °C. We also report the first conclusive bulk synthesis of a new boron nitride, B6N1-x. This subnitride was synthesized from B and hexagonal BN at 7.5 GPa and 1700 °C. XRD and PEELS shows that the boron subnitride has the α-rh. B structure and average composition B6N0.92

1995 ◽  
Vol 410 ◽  
Author(s):  
H. Hubert ◽  
L. A. J. Garvie ◽  
K. Leinenweber ◽  
P. R. Buseck ◽  
W. T. Petuskeyt ◽  
...  

ABSTRACTA multianvil device was used to investigate the formation of BxO phases produced in the 2 to 10 GPa pressure range with temperatures between 1000 and 1800 °C.Amorphous and crystalline B and BP were oxidized using B2O3 and CrO3. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), we were unable to detect graphitic or diamondstructured B2O, reported in previous studies. The refractory boride B6O, which has the α-rhombohedral boron structure, is the dominant suboxide in the P and T range of our investigation. PEELS with a transmission electron microscope was used to characterize the boron oxides.


1986 ◽  
Vol 1 (1) ◽  
pp. 177-186 ◽  
Author(s):  
L. Salamanca-Riba ◽  
N.-C. Yeh ◽  
M. S. Dresselhaus ◽  
M. Endo ◽  
T. Enoki

The in-plane and c-axis structure of KHx—GIC's and KDy—GIC's is studied using transmission electron microscopy (TEM) and x-ray diffraction as a function of intercalation temperature and time. With the TEM, two commensurate in-plane phases are found to coexist in these compounds with relative concentrations depending on intercalation conditions. When the direct intercalation method is used, the first step of intercalation is the formation of a stage n potassium-GIC and the final compound is a stage n KHx—GIC (or KDy—GIC). Highresolution (00l) lattice images show direct evidence for intermediate phases in the intercalation process. These intermediate phases are hydrogen (deuterium) deficient and are found at the boundary between pure potassium regions and regions with high hydrogen (deuterium) content. A comparison of the structure for the two methods of intercalation of KH is also presented.


2019 ◽  
Vol 52 (6) ◽  
pp. 1378-1384
Author(s):  
Sergey Gromilov ◽  
Anatoly Chepurov ◽  
Valeri Sonin ◽  
Egor Zhimulev ◽  
Aleksandr Sukhikh ◽  
...  

The Fe–C system, which is widely used to grow commercial high-pressure–high-temperature diamond monocrystals, is rather complicated due to the formation of carbides. The carbide Fe3C is a normal run product, but the pressure at which Fe7C3 carbide becomes stable is a subject of discussion. This paper demonstrates the synthesis of Fe7C3 carbide and its detailed study using single-crystal and powder X-ray diffraction, as well as electron probe micro-analysis and scanning electron microscopy. The experiments were performed using a multiple-anvil high-pressure apparatus of `split-sphere' (BARS) type at a pressure of 5.5 GPa and a temperature of 1623 K. Our results show that in the Fe–C system, in addition to diamond, a phase that corresponds to the Fe7C3 carbide was synthesized. This means that both carbides (Fe7C3 and Fe3C) are stable at 5.5 GPa. Two crystal phases are described, Fe14C6 and Fe28C12−x . Fe14C6 is based on the well known rhombic structure of Fe7C3, while Fe28C12−x has a different packing order of Fe6C polyhedrons. The results obtained in this study should be taken into account when synthesizing and growing diamond at high pressures and temperatures in metal–carbon systems with a high iron content, as well as when conducting experimental studies on the synthesis of diamond directly from carbide.


2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


2010 ◽  
Vol 88 (12) ◽  
pp. 1256-1261 ◽  
Author(s):  
Guifang Sun ◽  
Faming Gao ◽  
Li Hou

Boron carbonitride (BCN) nanotubes have been successfully prepared using NH4Cl, KBH4, and ZnBr2 as the reactants at 480 °C for 12 h by a new benzene-thermal approach in a N2 atmosphere. As its by-product, a new form of carbon regular hexagonal nanocages are observed. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), transmission electron diffraction (TED), electron energy loss spectroscopy (EELS), and high-resolution transmission electron microscopy (HRTEM). The prepared nanotubes have uniform outer diameters in the range of 150 to 500 nm and a length of up to several micrometerss. The novel carbon hexagonal nanocages have a typical size ranging from 100 nm to 1.5 µm, which could be the giant fullerene cages of [Formula: see text] (N = 17∼148). So, high fullerenes are observed for the first time. The influences of reaction temperature and ZnBr2 on products and the formation mechanism of BCN nanotubes are discussed.


2004 ◽  
Vol 19 (2) ◽  
pp. 417-422 ◽  
Author(s):  
Wenzhong Wang ◽  
Oomman K. Varghese ◽  
Maggie Paulose ◽  
Craig A. Grimes ◽  
Qinglei Wang ◽  
...  

Titania nanotubes synthesized by a soft chemical process are described, having diameters of 8 nm to 10 nm and lengths ranging from approximately 0.1 μm to 1 μm. X-ray diffraction studies show the structure of the as-prepared nanotubes is the same as that of the starting anatase TiO2nanoparticles. Energy-dispersive x-ray analysis and electron energy loss spectroscopy studies further indicate that the as-prepared nanotubes are composed of titania. Studies using transmission electron microscopy verified that the nanotubes are formed during alkali treatment, with subsequent acidic treatments having no effect on nanotube structure and shape.


Clay Minerals ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 379-390 ◽  
Author(s):  
W. Han ◽  
H. L. Hong ◽  
K. Yin ◽  
G. J. Churchman ◽  
Z. H. Li ◽  
...  

AbstractPedogenic alteration of illite from red earth sediments in Jiujiang in subtropical China was investigated using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Illite, hydroxy-interlayered vermiculite (HIV), kaolinite and mixed-layer illite-HIV (I-HIV) are present in the soils. The characteristic reflections of the clay phases were 14 Å, 10–14 Å, 10 Å, and 7 Å, respectively. After Mg-glycerol saturations, the 14 Å peak of the samples did not expand, and after heating at 350°C and 550°C it shifted to 13.8 Å and 12 Å respectively, with no residual 14 Å reflection, suggesting the occurrence of hydroxy-interlayered vermiculite. The randomly interstratified I-HIV clays were characterized by a broad peak at 10–14 Å, which did not change its position after Mg-glycerol saturation, but collapsed to 10 Å after heating at 350°C and 550°C. HRTEM analysis showed different lattice fringes of 12 Å, 10 Å and 7 Å . Mixed-layer I-HIV, HIV-K and illite-kaolinite (I-K) were observed in the HRTEM images which represented the intermediate phases during illite alteration. The merging of two 10 Å illite layers into a 12 Å HIV layer, lateral transformation of one HIV layer into one kaolinite layer and alteration of one illite layer into two kaolinite layers illustrated the mechanisms of illite-to-HIV, HIV-to-kaolinite and illite-tokaolinite transformation, respectively. The proposed pedogenic alteration of illite and the weathering sequence of the clay minerals in Jiujiang is illite → I-HIV → HIV → HIV-K → kaolinite. In addition, illite may transform directly to kaolinite.


1993 ◽  
Vol 8 (4) ◽  
pp. 713-719 ◽  
Author(s):  
P.J. Kung ◽  
M.P. Maley ◽  
P.G. Wahlbeck ◽  
D.E. Peterson

Crystal structure and superconductivity of the Tl–Ba–Ca–Cu–O powder prepared by a solid-state reaction were studied. The results of x-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses indicate that the powder of a major single 1223 phase was synthesized with a cauliflower-like morphology; by grinding, the powder was partially transformed to an amorphous phase. The measurement of magnetic hysteresis was also performed in the temperature range of 7–75 K up to 5 T from which the weak field-dependent behavior of critical current density was observed. The as-synthesized powder, with Tc = 110 K measured from magnetometer and susceptometer, is considered to consist of weak-linked regions. The results obtained from comparing the as-synthesized and the ground powder imply that in the Tl-1223 system, the Ag-sheathed tapes fabricated by the powder-in-tube process may be benefited by forming other intermediate phases with plate-like morphologies to give better densification or grain alignment.


2000 ◽  
Vol 56 (4) ◽  
pp. 659-665 ◽  
Author(s):  
I. P. Zibrov ◽  
V. P. Filonenko ◽  
M. Sundberg ◽  
P.-E. Werner

A sample of Ta2O5, ditantalum pentaoxide, heat-treated in a `toroid'-type high-pressure chamber at P = 8 GPa and T = 1470 K, was studied by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). Two high-pressure modifications of Ta2O5, isostructural with B-Nb2O5 and Z-Nb2O5, were identified from the X-ray powder pattern. Both structures were refined by the Rietveld method from the X-ray diffraction data: B-Ta2O5, a = 12.7853 (4), b = 4.8537 (1), c = 5.5276 (2) Å, β = 104.264 (2)°, V = 332.45 Å3, Z = 4, space group C2/c; Z-Ta2O5, a = 5.2252 (1), b = 4.6991 (1), c = 5.8534 (1) Å, β = 108.200 (2)°, V = 136.53 Å3, Z = 2, space group C2. The Z-Ta2O5 modification is new. The Ta atoms are six-coordinated in B-Ta2O5 and seven-coordinated in Z-Ta2O5. The two structures are closely related, which makes an intergrowth and a transformation between them possible. An idealized model of the intergrowth structure has been given. The HRTEM study showed defect-rich B-Ta2O5 crystals, which could be interpreted as an intergrowth between the B-Ta2O5 and Z-Ta2O5 phases.


2002 ◽  
Vol 17 (12) ◽  
pp. 3139-3145 ◽  
Author(s):  
Y. Zhao ◽  
D. W. He ◽  
L. L. Daemen ◽  
T. D. Shen ◽  
R. B. Schwarz ◽  
...  

We report here the high-pressure synthesis of well-sintered millimeter-sized bulks of superhard BC2N and BC4N materials in the form of a nanocrystalline composite with diamond-like amorphous carbon grain boundaries. The nanostructured superhard B–C–N material bulks were synthesized under high P–T conditions from amorphous phases of the ball-milled molar mixtures. The synthetic B–C–N samples were characterized by synchrotron x-ray diffraction, high-resolution transmission electron microscope, electron energy-loss spectra, and indentation hardness measurements. These new high-pressure phases of B–C–N compound have extreme hardnesses, second only to diamond. Comparative studies of the high P–T synthetic products of BC2N, BC4N, and segregated phases of diamond + cBN composite confirm the existence of the single B–C–N ternary phases.


Sign in / Sign up

Export Citation Format

Share Document