High-Pressure, High-Temperature Synthesis of Superhard Boron Suboxide

1995 ◽  
Vol 410 ◽  
Author(s):  
H. Hubert ◽  
L. A. J. Garvie ◽  
K. Leinenweber ◽  
P. R. Buseck ◽  
W. T. Petuskeyt ◽  
...  

ABSTRACTA multianvil device was used to investigate the formation of BxO phases produced in the 2 to 10 GPa pressure range with temperatures between 1000 and 1800 °C.Amorphous and crystalline B and BP were oxidized using B2O3 and CrO3. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), we were unable to detect graphitic or diamondstructured B2O, reported in previous studies. The refractory boride B6O, which has the α-rhombohedral boron structure, is the dominant suboxide in the P and T range of our investigation. PEELS with a transmission electron microscope was used to characterize the boron oxides.

2013 ◽  
Vol 664 ◽  
pp. 449-453 ◽  
Author(s):  
Sutham Niyomwas

The Si-SiC nanocomposites have been synthesized by self-propagating high temperature synthesis (SHS) from natural precursors. The effects of difference amount of added NaCl from 0 to 0.75 moles to the reactants on the Si-SiC conversion and particle size were investigated. The reaction were carried out in a SHS reactor under static argon gas at the pressure of 0.5 MPa. The nanocomposite results have been characterized by scanning electron microscope, Transmission Electron Microscopy and X-ray diffraction. The results showed that the production of nano-composite materials using SHS process is feasible and agree well with the thermodynamics calculations.


1997 ◽  
Vol 499 ◽  
Author(s):  
Hervé Hubert ◽  
Laurence A.J. Garvie ◽  
Bertrand Devouard ◽  
Paul F. McMillan

ABSTRACTWe prepared α-rhombohedral (α-rh.) B-rich materials in the B-C-N-O system at high-pressures and temperatures. Samples were synthesized using a multianvil device and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and parallel electron energy-loss spectroscopy (PEELS). The B-C-O compounds were obtained by reducing B2O3 with B, or mixtures of B and C between 1 to 10 GPa and 1200° and 1800° C In the B-O system we synthesized boron suboxide (nominally B6O) of high purity, crystallinity, and close to stoichiometric. Quantitative analyses give B6O0.95 and B6O0.77 for high-pressure and room-pressure samples, respectively. Between 4 to 5.5 GPa, B6O formed as macroscopic near-perfect regular icosahedra (to 30 μm in diameter). In the B-C-O system, intermediate phases were prepared showing evidence of solid solution between B4C and B6O. Boron carbide crystals, to 20 μm, containing a significant amount of O, typically B6C1.1O0.33 and B6C1.28O0.31, were grown for mixtures in which B and C were reacted with excess B2O3 at 7.5 GPa and 1700 °C. We also report the first conclusive bulk synthesis of a new boron nitride, B6N1-x. This subnitride was synthesized from B and hexagonal BN at 7.5 GPa and 1700 °C. XRD and PEELS shows that the boron subnitride has the α-rh. B structure and average composition B6N0.92


2020 ◽  
Vol 235 (8-9) ◽  
pp. 333-339
Author(s):  
Julia-Maria Hübner ◽  
Wilder Carrillo-Cabrera ◽  
Raul Cardoso-Gil ◽  
Primož Koželj ◽  
Ulrich Burkhardt ◽  
...  

AbstractThe new samarium germanide SmGe3 is obtained by high-pressure high-temperature synthesis of pre-reacted mixtures of samarium and germanium at a pressure of 9.5 GPa and temperatures between 1073 and 1273 K. SmGe3 decomposes at 470(5) K into SmGe2, α-Sm3Ge5 and a hitherto unknown phase. SmGe3 exhibits a superstructure of the cubic Cu3Au-type. Transmission electron microscopy measurements of crystalline particles and prepared lamellae indicate a high density of defects on the nanoscale. Selected area electron diffraction and elaborate X-ray powder diffraction measurements consistently indicate a 2a0 × 2a0 × 2a0 superstructure adopting space group $Fm\overline{3}m$ with a = 8.6719(2) Å.


2014 ◽  
Vol 543-547 ◽  
pp. 3741-3744
Author(s):  
Quan Jing Mei ◽  
Cong Ying Li ◽  
Jing Dong Guo ◽  
Gui Wang ◽  
Hai Tao Wu

The ecandrewsite-type ZnTiO3was successfully synthesized by the aqueous sol-gel method using TiO2dioxide and zinc nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized ZnTiO3powders were successfully obtained at 850 °C with particle size ~50 nm. By comparison, the aqueous sol-gel process was the most effective and least expensive technique used for the preparation of ZnTiO3nanopowders.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 873
Author(s):  
Chun-Liang Yeh ◽  
Chih-Yao Ke

The fabrication of intermetallic/ceramic composites by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) was investigated in the Al–Ni–Ti system with the addition of B4C. Two reaction systems were employed: one was used to produce the composites of xNiAl–2TiB2–TiC with x = 2–7, and the other was used to synthesize yNi3Al–2TiB2–TiC with y = 2–7. The reaction mechanism of the Al–Ni–Ti system was strongly influenced by the presence of B4C. The reaction of B4C with Ti was highly exothermic, so the reaction temperature and combustion velocity decreased due to increasing levels of Ni and Al in the reactant mixture. The activation energies of Ea = 110.6 and 172.1 kJ/mol were obtained for the fabrication of NiAl- and Ni3Al-based composites, respectively, by the SHS reaction. The XRD (X-ray diffraction) analysis showed an in situ formation of intermetallic (NiAl and Ni3Al) and ceramic phases (TiB2 and TiC) and confirmed no reactions taking place between Ti and Al or Ni. The microstructure of the product revealed large NiAl and Ni3Al grains and small TiB2 and TiC particles. With the addition of TiB2 and TiC, the hardness of NiAl and Ni3Al was considerably increased and the toughness was also improved.


2012 ◽  
Vol 626 ◽  
pp. 138-142
Author(s):  
Saowanee Singsarothai ◽  
Vishnu Rachpech ◽  
Sutham Niyomwas

The steel substrate was coated by Fe-based composite using self-propagating high-temperature synthesis (SHS) reaction of reactant coating paste. The green paste was prepared by mixing precursor powders of Al, Fe2O3and Al2O3. It was coated on the steel substrate before igniting by oxy-acetylene flame. The effect of coating paste thickness and the additives on the resulted Fe-based composite coating was studied. The composite coating was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with dispersive X-ray (EDS).


2012 ◽  
Vol 488-489 ◽  
pp. 468-472 ◽  
Author(s):  
Pajaree Kerdkool ◽  
Sutham Niyomwas

Steel pipe lined Fe-Al intermetallic-TiB2-Al2O3composite were prepared by centrifugal-self-propagating high temperature synthesis (centrifugal-SHS) process from FeTiO3, B2O3, Fe2O3, Al and CaF2as raw materials. The standard Gibbs energy minimization method was used to calculate the equilibrium compositions of the reacting species. The effect of adding CaF2to the precursors on the result product were investigated. The phase separation between less porosity Fe-Al intermetallics-TiB2with Al2O3layer were affected greatly by adding CaF2. The phase compositions and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) couple with energy dispersive X-ray (EDX), respectively.


2010 ◽  
Vol 88 (12) ◽  
pp. 1256-1261 ◽  
Author(s):  
Guifang Sun ◽  
Faming Gao ◽  
Li Hou

Boron carbonitride (BCN) nanotubes have been successfully prepared using NH4Cl, KBH4, and ZnBr2 as the reactants at 480 °C for 12 h by a new benzene-thermal approach in a N2 atmosphere. As its by-product, a new form of carbon regular hexagonal nanocages are observed. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), transmission electron diffraction (TED), electron energy loss spectroscopy (EELS), and high-resolution transmission electron microscopy (HRTEM). The prepared nanotubes have uniform outer diameters in the range of 150 to 500 nm and a length of up to several micrometerss. The novel carbon hexagonal nanocages have a typical size ranging from 100 nm to 1.5 µm, which could be the giant fullerene cages of [Formula: see text] (N = 17∼148). So, high fullerenes are observed for the first time. The influences of reaction temperature and ZnBr2 on products and the formation mechanism of BCN nanotubes are discussed.


Sign in / Sign up

Export Citation Format

Share Document