Macro-and Microstrain Relaxation in Annealed Ag Films During Ageing at Room Temperature

1997 ◽  
Vol 505 ◽  
Author(s):  
R. C. Currie ◽  
R. Delhez ◽  
E. J. Mitiemeijer

ABSTRACTThe relaxation of thermally induced strain in 500 nm thick polycrystalline Ag layers electron-beam deposited onto Si wafers was traced during ageing at room temperature. The layers consisted predominantly of matrix crystallites with {111} planes parallel to the surface and twin crystallites with {51 l} planes parallel to the surface. The macrostrain in the plane of the layer was determined from the X-ray diffraction line-profile position and the microstrain from the diffraction-line broadening. The residual macrostress relaxed from 160 MPa to 30 MPa in the matrix crystallites and from 170 MPa to 50 MPa in the twin crystallites. Simultaneously with the decrease in macrostress the microstrain decreases significantly for both texture fractions. The strain relaxation behaviour is governed by movement and subsequent annihilation of defects in the layer.

1989 ◽  
Vol 22 (4) ◽  
pp. 299-307 ◽  
Author(s):  
R. Kužel ◽  
P. Klimanek

Procedures of X-ray diffraction line profile analysis for the evaluation of the dislocation content in plastically deformed hexagonal materials were tested by means of conventional powder diffractometry on polycrystalline zirconium deformed under tension at 77 K. In order to obtain a representative picture of the dislocation-induced X-ray line broadening a series of reflections was measured. The integral breadths and the Fourier coefficients were evaluated by both direct profile-shape analysis and profile fitting with analytical functions. The results show a significant anisotropy of the line broadening. The 0001 reflections are clearly less broadened than most of the others. According to the theoretical calculations presented previously such a phenomenon can be expected if the plastic deformation favours generation of dislocations with Burgers vectors a/3 〈2{\bar 1} {\bar 1}0〉.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


1974 ◽  
Vol 29 (12) ◽  
pp. 1771-1777 ◽  
Author(s):  
N. C. Haider ◽  
S. H. Hunter

Powder Cd of 99.999% purity was prepared at room temperature (25 °C) and x-ray diffraction patterns were obtained using CuKaα radiation with Ni-filter. The line broadening was analyzed after incorporating the appropriate correction factors. At room temperature Cd was found to have large particle size (653 A), small root mean square strain (.001), small deformation fault probability a (.003). and negligible growth fault probability β(0). Compared to other hep metals which have been studied earlier and which have higher melting temperatures, metal Cd is much less affected by mechanical deformation at room temperature.


2006 ◽  
Vol 54 (3) ◽  
pp. 390-401 ◽  
Author(s):  
Joaquin Bastida ◽  
Marek A. Kojdecki ◽  
Pablo Pardo ◽  
Pedro Amorós

2006 ◽  
Vol 118 ◽  
pp. 53-58
Author(s):  
Elisabeth Meijer ◽  
Nicholas Armstrong ◽  
Wing Yiu Yeung

This study is to investigate the crystallite development in nanostructured aluminium using x-ray line broadening analysis. Nanostructured aluminium was produced by equal channel angular extrusion at room temperature to a total deformation strain of ~17. Samples of the extruded metal were then heat treated at temperatures up to 300oC. High order diffraction peaks were obtained using Mo radiation and the integral breadth was determined. It was found that as the annealing temperature increased, the integral breadth of the peak reflections decreased. By establishing the modified Williamson-Hall plots (integral breadth vs contract factor) after instrumental correction, it was determined that the crystallite size of the metal was maintained ~80 nm at 100oC. As the annealing temperature increased to 200oC, the crystallite size increased to ~118 nm. With increasing annealing temperature, the hardness of the metal decreased from ~60 HV to ~45 HV.


Sign in / Sign up

Export Citation Format

Share Document