Sorption Kinetics of Uranium-238, Neptunium-237, Caesium-134, and Strontium-85 on a Glacial Deposit

1997 ◽  
Vol 506 ◽  
Author(s):  
L.N. Moyes ◽  
D.J. Bunker ◽  
J.T. Smith ◽  
F.R. Livens ◽  
C.R. Hughes ◽  
...  

ABSTRACTBatch sorption experiments have been used to assess the sorption behaviour of four radionuclides, important in the context of low-level waste disposal, on a glacial substrate. Data for sorption of 238U, 237Np, 134Cs and 85Sr are compared and agree well with independent studies. A series of well-established kinetic models have been used to describe the individual uptake mechanisms and rate parameters reported. Sorption occurs via both equilibrium and kinetically controlled pathways, with neptunium sorption being under kinetic control to the greatest extent.

1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


CrystEngComm ◽  
2019 ◽  
Vol 21 (15) ◽  
pp. 2551-2558 ◽  
Author(s):  
Dominik Fröhlich ◽  
Philipp Hügenell ◽  
Helge Reinsch

The water sorption behaviour of aluminium MOF CAU-10 and CAU-15-Cit was followed by in situ powder X-ray diffraction.


2015 ◽  
Vol 1 (1) ◽  
pp. 13-18
Author(s):  
Quazi Forhad Quadir ◽  
Atiqur Rahman

The study was carried out to investigate the ecotoxicity of Isoproturon on Lemna minor and the interaction of the EC50 value of the chemical with sorption behaviour of the chemical in soil. The sorption isotherms (Kf and KOC) for Isoproturon were determined for three different soils having various organic carbon and clay content. EC50 for Lemna was determined both with and without soil. Both the Freundlich adsorption coefficient (Kf) and normalized sorption coefficient (KOC) values varied with different types of soil. There was moderate correlation between the log Kf and log KOC existed. The regression study revealed a strong relationship between log KOC and organic carbon and between log KOC and soil clay content. There EC50 value for Lemna grown with soil was higher than that grown without soil. However, the difference was statistically insignificant. Greater degree of inconsistency in various data suggests the reiteration of the study.DOI: http://dx.doi.org/10.3329/ralf.v1i1.22347 Res. Agric., Livest. Fish.1(1): 13-18, Dec 2014


1991 ◽  
Vol 56 (3) ◽  
pp. 712-717 ◽  
Author(s):  
Jana Formelová ◽  
Albert Breier ◽  
Peter Gemeiner ◽  
Lubica Kurillová

Trypsin has been entrapped within liposomes prepared from egg yolk phospholipides by the method of controlled dialysis, and the hydrolysis kinetics of Nα-benzoyl-DL-arginine p-nitroaniline catalyzed by the liposome-entrapped trypsin has been studied by monitoring the flux of substrate and product across the liposomal membrane. The partitioning of the substrate and product between liposomal and extraliposomal environment has been found to represent the main factor in the kinetic control of the hydrolysis.


1994 ◽  
Vol 59 (9) ◽  
pp. 2029-2041
Author(s):  
Oldřich Pytela ◽  
Taťjana Nevěčná

The kinetics of decomposition of 1,3-bis(4-methylphenyl)triazene catalyzed with 13 substituted benzoic acids of various concentrations have been measured in 25 vol.% aqueous methanol at 25.0 °C. The rate constants observed (297 data) have be used as values of independent variable in a series of models of the catalyzed decomposition. For the catalytic particles were considered the undissociated acid, its conjugated base, and the proton in both the specific and general catalyses. Some models presumed formation of reactive or nonreactive complexes of the individual reactants. The substituent effect is described by the Hammett equation. The statistically best model in which the observed rate constant is a superposition of a term describing the dependence on proton concentration and a term describing the dependence on the product of concentrations of proton and conjugated base is valid with the presumption of complete proton transfer from the catalyst acid to substrate, which has been proved. The behaviour of 4-dimethylamino, 4-amino, and 3-amino derivatives is anomalous (lower catalytic activity as compared with benzoic acid). This supports the presumed participation of conjugated base in the title process.


1989 ◽  
Vol 54 (5) ◽  
pp. 1311-1317
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The kinetics of liquid-phase isothermal esterification of POCl3 with 2-isopropylphenol and 4-isopropylphenol have been studied within the temperature intervals of 110 to 130 and 90 to 110 °C, respectively. The rate constants and activation energies of the individual steps of this three-step reaction have been calculated from the values measured. The reaction rates of the two isomers markedly differ: at 110 °C 4-isopropylphenol reacts faster by the factors of about 7 and 20 for k1 and k3, respectively. This finding can be utilized in preparation of mixed triaryl phosphates, since the alkylation mixture after reaction of phenol with propene contains an excess of 2-isopropylphenol over 4-isopropylphenol.


2010 ◽  
Vol 27 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Michael J. Wilkins ◽  
Francis R. Livens ◽  
David J. Vaughan ◽  
Jonathan R. Lloyd ◽  
Ian Beadle ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 723
Author(s):  
Mahesh Muraleedharan Nair ◽  
Stéphane Abanades

The CeO2/CeO2−δ redox system occupies a unique position as an oxygen carrier in chemical looping processes for producing solar fuels, using concentrated solar energy. The two-step thermochemical ceria-based cycle for the production of synthesis gas from methane and solar energy, followed by CO2 splitting, was considered in this work. This topic concerns one of the emerging and most promising processes for the recycling and valorization of anthropogenic greenhouse gas emissions. The development of redox-active catalysts with enhanced efficiency for solar thermochemical fuel production and CO2 conversion is a highly demanding and challenging topic. The determination of redox reaction kinetics is crucial for process design and optimization. In this study, the solid-state redox kinetics of CeO2 in the two-step process with CH4 as the reducing agent and CO2 as the oxidizing agent was investigated in an original prototype solar thermogravimetric reactor equipped with a parabolic dish solar concentrator. In particular, the ceria reduction and re-oxidation reactions were carried out under isothermal conditions. Several solid-state kinetic models based on reaction order, nucleation, shrinking core, and diffusion were utilized for deducing the reaction mechanisms. It was observed that both ceria reduction with CH4 and re-oxidation with CO2 were best represented by a 2D nucleation and nuclei growth model under the applied conditions. The kinetic models exhibiting the best agreement with the experimental reaction data were used to estimate the kinetic parameters. The values of apparent activation energies (~80 kJ·mol−1 for reduction and ~10 kJ·mol−1 for re-oxidation) and pre-exponential factors (~2–9 s−1 for reduction and ~123–253 s−1 for re-oxidation) were obtained from the Arrhenius plots.


Sign in / Sign up

Export Citation Format

Share Document