Chimney-Shaped and Plateau-Shaped Gate Electrode Field Emission Arrays

1998 ◽  
Vol 509 ◽  
Author(s):  
F. G. Tarntair ◽  
C. C. Wang ◽  
W. K. Hong ◽  
H. K. Huang ◽  
H. C. Cheng

AbstractA triode structure of chimney-shaped field emitter arrays is proposed in this article. This triode structure includes the chimney-shaped emitter, thermal oxidation dioxide, and the plateau-shaped singlecrystalline silicon gate electrode. For the application of the matrix-addressable and large area flat panel display, the uniform structure of the emitters and the yield become critical manufacturing issues when attempting to control nano-meter size features. The uniformity and yield of the chimney-shaped emitters are very well controlled. The nano-sized gate-to-emitter separations can be created by the changing thickness of the insulator. The uniformity of the insulator and emitter material can be controlled within 3% which can be obtained by most large area thin film deposition tools, not by photolithography.

1998 ◽  
Vol 508 ◽  
Author(s):  
F. G. Tarntair ◽  
C. C. Wang ◽  
W.K. Hong ◽  
H. K. Huang ◽  
H. C. Cheng

AbstractA triode structure of chimney-shaped field emitter arrays is proposed in this article. This triode structure includes the chimney-shaped emitter, thermal oxidation dioxide, and the plateau-shaped singlecrystalline silicon gate electrode. For the application of the matrix-addressable and large area flat panel display, the uniform structure of the emitters and the yield become critical manufacturing issues when attempting to control nano-meter size features. The uniformity and yield of the chimney-shaped emitters are very well controlled. The nano-sized gate-to-emitter separations can be created by the changing thickness of the insulator. The uniformity of the insulator and emitter material can be controlled within 3% which can be obtained by most large area thin film deposition tools, not by photolithography.


2004 ◽  
Vol 43 (7A) ◽  
pp. 4373-4375 ◽  
Author(s):  
Kyong Nam Kim ◽  
Young June Lee ◽  
Seung Jae Jung ◽  
Geun Young Yeom

2013 ◽  
Vol 1538 ◽  
pp. 275-280
Author(s):  
S.L. Rugen-Hankey ◽  
V. Barrioz ◽  
A. J. Clayton ◽  
G. Kartopu ◽  
S.J.C. Irvine ◽  
...  

ABSTRACTThin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.


2016 ◽  
Vol 62 (14) ◽  
pp. 1457-1463
Author(s):  
WeiHai SUN ◽  
CunCun WU ◽  
ZhiJian CHEN ◽  
LiXin XIAO

2007 ◽  
Vol 27 (13-15) ◽  
pp. 3789-3792 ◽  
Author(s):  
G. Suchaneck ◽  
W.-M. Lin ◽  
V.S. Vidyarthi ◽  
G. Gerlach ◽  
J. Hartung

2019 ◽  
Author(s):  
Alexander John Cruz ◽  
Ivo Stassen ◽  
Mikhail Krishtab ◽  
Kristof Marcoen ◽  
Timothée Stassin ◽  
...  

<p>Robust and scalable thin film deposition methods are key to realize the potential of metal-organic frameworks (MOFs) in electronic devices. Here, we report the first integration of the chemical vapor deposition (CVD) of MOF coatings in a custom reactor within a cleanroom setting. As a test case, the MOF-CVD conditions for ZIF-8 are optimized to enable smooth, pinhole-free, and uniform thin films on full 200 mm wafers under mild conditions. The single-chamber MOF-CVD process and the impact of the deposition parameters are elucidated <i>via</i> a combination of <i>in situ </i>monitoring and <i>ex situ</i> characterization. The resulting process guidelines will pave the way for new MOF-CVD formulations and a plethora of MOF-based devices.<br></p>


2007 ◽  
Vol 32 (2) ◽  
pp. 497-500 ◽  
Author(s):  
Daisuke Tsukiyama ◽  
Kousuke Takenaka ◽  
Yuichi Setsuhara ◽  
Kazuaki Nishisaka ◽  
Akinori Ebe

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nina Taherimakhsousi ◽  
Mathilde Fievez ◽  
Benjamin P. MacLeod ◽  
Edward P. Booker ◽  
Emmanuelle Fayard ◽  
...  

AbstractWe report a fast, reliable and non-destructive method for quantifying the homogeneity of perovskite thin films over large areas using machine vision. We adapt existing machine vision algorithms to spatially quantify multiple perovskite film properties (substrate coverage, film thickness, defect density) with pixel resolution from pictures of 25 cm2 samples. Our machine vision tool—called PerovskiteVision—can be combined with an optical model to predict photovoltaic cell and module current density from the perovskite film thickness. We use the measured film properties and predicted device current density to identify a posteriori the process conditions that simultaneously maximize the device performance and the manufacturing throughput for large-area perovskite deposition using gas-knife assisted slot-die coating. PerovskiteVision thus facilitates the transfer of a new deposition process to large-scale photovoltaic module manufacturing. This work shows how machine vision can accelerate slow characterization steps essential for the multi-objective optimization of thin film deposition processes.


Sign in / Sign up

Export Citation Format

Share Document