EPR Study of the Role of Hydrogen in the Defect Formation Upon Heat Treatment of Oxidized SiC

1998 ◽  
Vol 513 ◽  
Author(s):  
P. J. Macfarlane ◽  
M. E. Zvanut

ABSTRACTFor the past several years hydrogen incorporation in metal oxide semiconductor (MOS) devices has been of interest because studies have shown that vacuum annealing of oxidized Si substrates desorbs hydrogen, revealing interfacial defects. Today, in applications that require higher power and/or temperature, Si will likely be replaced with a wide-band-gap semiconductor. For MOS devices, SiC is a leading contender because it can be thermally oxidized to form a SiO2 insulating layer similar to Si. However, the SiC/SiO2 structure potentially contains hydrogen sensitive centers similar to those found in Si/SiO2 structures. Using electron paramagnetic resonance (EPR), we have observed a center 1.8 G wide peak-to-peak at g=2.0026. The center is generated in oxidized SiC that has received a 900° C dry, N2 or O2, post oxidation heat-treatment in which moisture is measured to be less than 1 ppm. Annealing at 900° C in standard Ar containing at least 50 ppm H2O decreases the center's concentration by two orders of magnitude. By comparing results from our study to studies of Si-H and C-H bonds in a-SiC:H [1] and SiC converted graphite [2], we suggest that this center is related to carbon dangling bonds created by the effusion of hydrogen during the dry heat-treatment. We will compare the activation energy for the hydrogen depassivation of our center with that found for other C-H and Si-H systems.

1999 ◽  
Vol 572 ◽  
Author(s):  
P. J. Macfarlane ◽  
M. E. Zvanut

ABSTRACTSiC is perhaps the most appropriate material to replace Si in power-metal-oxidesemiconductor- field-effect-transistors (MOSFETs), because, unlike the other wide band-gap semiconductors, SiC can be thermally oxidized similarly to Si to form a SiO2 insulating layer. In our studies of oxidized SiC, we have used electron paramagnetic resonance (EPR) to identify Cdangling bonds generated by hydrogen release from C-H bonds. While hydrogen's effect on SiCbased MOSFETs is uncertain, studies of Si-based MOSFETs indicate that it is important to minimize hydrogen in MOS structures. To examine the role of hydrogen, we have studied the effects of SiC/SiO2 fabrication on the density of C-related centers, which are made EPR active by a dry heat-treatment. Here we examine the starting and ending procedures of our oxidation routine. The parameter that appears to have the greatest effect on center density is the ending step of our oxidation procedure. For example, samples that were removed from the furnace in flowing O2 produced the smallest concentration of centers after dry heat-treatment. We report on the details of these experiments and use our results to suggest an oxidation procedure that limits center production.


1994 ◽  
Vol 358 ◽  
Author(s):  
K. Dovidenko ◽  
S. Oktyabrsky ◽  
J. Narayan ◽  
M. Razeghi

ABSTRACTThe microstructural characteristics of wide band gap semiconductor, hexagonal A1N thin films on Si(100), (111), and sapphire (0001) and (10ī2) were studied by transmission electron microscopy (TEM) and x-ray diffraction. The films were grown by MOCVD from TMA1 + NH3 + N2 gas mixtures. Different degrees of film crystallinity were observed for films grown on α-A12O3 and Si substrates in different orientations. The epitaxial growth of high quality single crystalline A1N film on (0001) α-Al2O3 was demonstrated with a dislocation density of about 2*10 10cm−2 . The films on Si(111) and Si(100) substrates were textured with the c-axis of A1N being perpendicular to the substrate surface.


2015 ◽  
Vol 1109 ◽  
pp. 104-107
Author(s):  
K.L. Foo ◽  
U. Hashim ◽  
Chun Hong Voon ◽  
M. Kashif

ZnO nanorods, type of the metal-oxide semiconductor deposited on interdigitated electrode (IDE) substrate using hydrothermal growth technique. The growth ZnO nanorods was annealed in furnace at 500°C for 2 hours as to obtain highly crystallite of ZnO nanorods. XRD pattern indicated the synthesized ZnO nanorods have preferred orientation along the (002) plane. Moreover, FESEM images showed that the nanorods with the size less than 60 nanometer were successfully synthesized using hydrothermal growth technique. The investigation on optical properties using UV-Vis-NIR spectrophotometer confirmed ZnO is classified as a wide band gap semiconductor material. Furthermore, the growth ZnO nanorods which undergo electrical properties testing using dielectric analyzer and source meter show that the ZnO nanorods demonstrated rectifying behaviour.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2279 ◽  
Author(s):  
Mohammad Ekrami ◽  
Gabriele Magna ◽  
Zahra Emam-djomeh ◽  
Mohammad Saeed Yarmand ◽  
Roberto Paolesse ◽  
...  

Hybrid materials made of wide band gap semiconductors and dye molecules are largely studied mainly for photovoltaic applications. However, these materials also show interesting chemical sensitivity. Zinc oxides (ZnO) and porphyrins are good examples of a metal oxide semiconductor and a dye molecule that give rise to a hybrid material with such interesting properties. ZnO has been studied for sensors, optoelectronics, electronic devices, photo-anodes for dye-sensitized solar cells, and for mechanical energy harvesting. Porphyrins, on the other side, can be synthesized in order to mimic their roles in living systems such as oxygen transport and charge transfer for catalytic processes in animals and photosynthesis in plants. This paper provides a review of the chemical sensing properties of porphyrin-capped ZnO nanostructures. The methodologies to functionalize the ZnO surface with porphyrins are illustrated with emphasis on the relationships between the material preparation and its sensing properties. The development of sensors is described through the application of the hybrid materials to different transducers.


Sign in / Sign up

Export Citation Format

Share Document