Application of Tem on Sub-Half Micron Semiconductor Devices

1998 ◽  
Vol 523 ◽  
Author(s):  
Hong Zhang

AbstractApplication of transmission electron microscopy on sub-half micron devices has been illustrated in terms of process evaluation and failure analysis. For process evaluation, it is emphasized that a large number of features need to be examined in order to have reliable conclusions about the processes, while for failure analysis, the goal is to pin-point a single process step causing failure or a single source introducing the particle defect.

2010 ◽  
Vol 663-665 ◽  
pp. 100-103
Author(s):  
Zhen Ni Du ◽  
Yong Cai Zhang ◽  
Zhi You Xu ◽  
Ming Zhang

The synthesis of hexagonal phase Zn1-xMnxS (x = 0–0.05) nanorods was achieved by hydrothermal treatment of zinc manganese diethyldithiocarbamates (Zn1-xMnx-(DDTC)2, x=0–0.05) in 40 mass % hydrate hydrazine aqueous solution at 180 °C for 12 h. The structure, composition and optical property of the obtained products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra.


Author(s):  
H.H. Yap ◽  
P.K. Tan ◽  
J. Lam ◽  
T.H. Ng ◽  
G.R. Low ◽  
...  

Abstract With the scaling of semiconductor devices to nanometer range, ensuring surface uniformity over a large area while performing top down physical delayering has become a greater challenge. In this paper, the application of laser deprocessing technique (LDT) to achieve better surface uniformity as well as for fast deprocessing of sample for defect identification in nanoscale devices are discussed. The proposed laser deprocess technique is a cost-effective and quick way to deprocess sample for defect identification and Transmission Electron Microscopy (TEM) analysis.


1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


2005 ◽  
Vol 11 (5) ◽  
pp. 378-400 ◽  
Author(s):  
Christian Kübel ◽  
Andreas Voigt ◽  
Remco Schoenmakers ◽  
Max Otten ◽  
David Su ◽  
...  

Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1–2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.


1999 ◽  
Vol 14 (8) ◽  
pp. 3237-3240 ◽  
Author(s):  
N. Revaprasadu ◽  
M. Azad Malik ◽  
P. O'Brien ◽  
G. Wakefield

Nanoparticles of ZnS capped with tri-n-octylphosphineoxide (TOPO) and close to monodispersed have been prepared by a single-source route using ethyl(di-ethyldithiocarbamato)zinc(II) as a precursor. The nanoparticles obtained showed quantum size effects in their optical spectra, and the photoluminescence spectrum showed a broad emission that could be attributed to the surface traps. A blue shift of 0.31 eV in relation to the bulk material was observed. The selected area electron diffraction, x-ray diffraction pattern and transmission electron microscopy showed the material to be of the zinc blend structure. The crystallinity of the material was also evident from high-resolution transmission electron microscopy, which gave well-defined images of nano-sized particles with clear lattice fringes and a spacing of approximately 3 Å, corresponding to the (111) planes of the cubic crystalline ZnS phase and in the size range of 3.9–4.9 nm. The presence of strong phosphorus peak in the energy dispersion analytical x-ray pattern, together with a shift in infrared band for P = O of TOPO showed that the particles were TOPO capped.


2011 ◽  
Vol 17 (S2) ◽  
pp. 1762-1763 ◽  
Author(s):  
M Wright ◽  
R Christoffersen ◽  
Z Rahman ◽  
S McDanels

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document