Determination of Ionic Diffusion Mechanisms in Solids

1998 ◽  
Vol 527 ◽  
Author(s):  
John Corish

ABSTRACTThe experimental and atomistic simulation methodologies by which microscopic diffusion mechanisms can be determined in solids are described. Measurement of the Haven Ratio requires evaluation of the diffusion coefficient and of the ionic conductivity for the species in pure and doped specimens and is, in practice, limited to simpler materials. Atomistic simulations using lattice statics, molecular dynamics and Monte Carlo techniques can yield very detailed information on the pathways followed by migrating ions and are being utilised more extensively for this purpose. Examples of such experimental and simulation studies are discussed.

2019 ◽  
Vol 21 (39) ◽  
pp. 22149-22157 ◽  
Author(s):  
Lixi Liu ◽  
Yan Chen ◽  
Fei Dang ◽  
Yilun Liu ◽  
Xiaogeng Tian ◽  
...  

The synergistic effect of scCO2 and organic solvent on exfoliation of graphene was studied by experiments and atomistic simulations.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5859-5864 ◽  
Author(s):  
SIZHU WU ◽  
JUN YI ◽  
LISHU ZHANG ◽  
LIQUN ZHANG ◽  
JAMES E. MARK

In this research, molecular dynamics(MD) simulations were used to study the transport properties of small gas molecules in poly(ethylene-co-1-hexene) copolymer. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) forcefield was applied. The diffusion coefficients were obtained from MD (NVT ensemble). The results indicated that the diffusion coefficient of oxygen increased with increasing 1-hexene content in copolymer membrane.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (3) ◽  
pp. 184-189 ◽  
Author(s):  
P.M. Derlet ◽  
P. Gumbsch ◽  
R. Hoagland ◽  
J. Li ◽  
D.L. McDowell ◽  
...  

AbstractInternal microstructural length scales play a fundamental role in the strength and ductility of a material. Grain boundaries in nanocrystalline structures and heterointerfaces in nanolaminates can restrict dislocation propagation and also act as a source for new dislocations, thereby affecting the detailed dynamics of dislocation-mediated plasticity. Atomistic simulation has played an important and complementary role to experiment in elucidating the nature of the dislocation/interface interaction, demonstrating a diversity of atomic-scale processes covering dislocation nucleation, propagation, absorption, and transmission at interfaces. This article reviews some atomistic simulation work that has made progress in this field and discusses possible strategies in overcoming the inherent time scale challenge of finite temperature molecular dynamics.


2020 ◽  
Vol MA2020-02 (5) ◽  
pp. 894-894
Author(s):  
Didier Devaux ◽  
Hugo Leduc ◽  
Philippe Dumaz ◽  
Margaud Lecuyer ◽  
Marc Deschamps ◽  
...  

1990 ◽  
Vol 209 ◽  
Author(s):  
F. Willaime ◽  
C. Massobrio

ABSTRACTBasing our calculations on a realistic N-body interatomic potential for Zr, we study the vacancy migration mechanism and determine the related diffusion coefficient in the bcc phase. The form of the potential energy along the nearest-neighborjump migration path is single-peaked. The vacancy jump rate determined by molecular dynamics simulations has a perfectly Arrhenian behavior and its activation energy is very close to the static value of the vacancy migration energy, both being very low (≈ 0.3 eV) . The diffusion coefficient is in very satisfactory agreement with experiments.


Author(s):  
Gary Yu ◽  
Martin Walker ◽  
Mark Richard Wilson

Cyanine dyes are known to form large-scale aggregates of various morphologies via spontaneous self-assembly in aqueous solution, akin to chromonic liquid crystals. Atomistic molecular dynamics simulations have been performed on...


Sign in / Sign up

Export Citation Format

Share Document