Thermal Stress During Zone-Melting-Recrystallization of Silicon on Insulator Films: The Origin of Subboundaries and In-Plane Orientation of SOI

1985 ◽  
Vol 53 ◽  
Author(s):  
J.M. Gibson ◽  
L.N. Pfeiffer ◽  
K.W. West ◽  
D.C. Joy

ABSTRACTThe effect of thermal stress during zone-melting recrystallization of silicon on insulator films is considered. New experimental results from graphite-strip heated films are drawn upon. It is found that low-angle grain boundaries exhibit an inverse dependence between spacing and tilt angle. This is explained semiquantitatively by a model in which thermal stress induced film buckling is responsible for the existence of low-angle grain boundaries. It is also suggested that the predominance of the <100> orientation in these films is partly due to thermal stress and the elastic anisotropy of silicon. Thus thermal stress is proposed as the origin of the two major features of zone-melted films.

1985 ◽  
Vol 53 ◽  
Author(s):  
M. W. Geis ◽  
C. K. Chen ◽  
Henry I. Smith ◽  
P. M. Nitishin ◽  
B-Y. Tsaur ◽  
...  

ABSTRACTSince the introduction of zone-melting recrystallization (ZMR)for silicon-on-insulator (SOI) films, subboundaries (low-angle grain boundaries) have been the major crystalline defects in recrystallized films. By using an improved ZMR procedure, subboundaries have been eliminated over large areas. The improvements include the use of 1-µm-thick polycrystalline-Si films deposited on 2-µm-thick thermal SiO2 film (instead of 0.5-µm-thick Si and SiO2 films), a new encapsulation technique, and improved control of the thermal gradient during ZMR. Recrystallized SOI films without subboundaries contain isolated dislocations with densities <2 × 106 cm−2.


2011 ◽  
Vol 239-242 ◽  
pp. 1670-1673 ◽  
Author(s):  
Lei Li ◽  
Biao Ma ◽  
Qiang Li ◽  
Guo Jie Huang

Traditional lead brass is gradually prevented from application by many countries’ governments because lead does harm to human health and pollutes the environment. New types of environment-friendly lead-free brass with favorable machinability are urgently demanded in the electrical, electronics and plumping fields. Lead-free Mg-Sb brass was fabricated in present. Experimental results showed that when the content of Mg is 1.0wt%, Sb is 0.8wt% and Cu is 58.0~59.0wt%, the alloy’s mechanical properties and machinability are favorable for industry application. With the increase of the content of Sb, the machinability increased, while the mechanical properties decreased. Lots of Cu2Mg and Cu9Sb2 particles on the order of microns exist in the inner-grain and grain boundaries. These particles improve the machinability, however, lower the tensile strength and the elongation. A three-way pipe joint was successfully punched with the fabricated Mg-Sb brass bar, and this demonstrated that the fabricated Mg-Sb brass possesses favorable hot working property.


1992 ◽  
Vol 139 (9) ◽  
pp. 2687-2695 ◽  
Author(s):  
I. N. Miaoulis ◽  
P. Y. Wong ◽  
S. M. Yoon ◽  
R. D. Robinson ◽  
C. K. Hess

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3979
Author(s):  
Jun Eon An ◽  
Usung Park ◽  
Dong Geon Jung ◽  
Chihyun Park ◽  
Seong Ho Kong

Die attach is a typical process that induces thermal stress in the fabrication of microelectromechanical system (MEMS) devices. One solution to this problem is attaching a portion of the die to the package. In such partial die bonding, the lack of control over the spreading of the adhesive can cause non-uniform attachment. In this case, asymmetric packaging stress could be generated and transferred to the die. The performance of MEMS devices, which employ the differential outputs of the sensing elements, is directly affected by the asymmetric packaging stress. In this paper, we proposed a die-attach structure with a pillar to reduce the asymmetric packaging stress and the changes in packaging stress due to changes in the device temperature. To verify the proposed structure, we fabricated four types of differential resonant accelerometers (DRA) with the silicon-on-glass process. We confirmed experimentally that the pillar can control the spreading of the adhesive and that the asymmetric packaging stress is considerably reduced. The simulation and experimental results indicated that the DRAs manufactured using glass-on-silicon wafers as handle substrates instead of conventional glass wafers have a structure that compensates for the thermal stress.


1983 ◽  
Vol 23 ◽  
Author(s):  
John C. C. Fan ◽  
B-Y. Tsaur ◽  
C. K. Chen ◽  
J. R. Dick ◽  
L. L. Kazmerski

ABSTRACTUsing secondary-ion mass spectroscopy, we have found that oxygen is strongly concentrated at the sub-boundaries in zone-melting-recrystallized silicon-on-insulator films prepared by the graphite-strip-heater technique. This observation suggests that the formation of sub-boundaries during recrystallization may be caused by constitutional supercooling resulting from the presence of oxygen that is dissolved into the molten Si zone from the adjacent SiO2 layers. Since all zone-melting-recrystallized films to date have been bordered by SiO2 layers, regardless of the heating techniques employed, the sub-boundaries almost always present in these films may well have dissolved oxygen as their common origin.


2012 ◽  
Vol 715-716 ◽  
pp. 235-242 ◽  
Author(s):  
Günter Gottstein

A new approach to dynamic recrystallization (DRX) is introduced. It is based on the assumption that the critical conditions for DRX and the arrest of DRX grain boundaries are related to the development of mobile subboundaries. The theoretical predictions are compared to experimental results during incipient and steady-state DRX. The grain size sensitivity of the DRX grains establishes the desired link between deformation and DRX microstructure.


Sign in / Sign up

Export Citation Format

Share Document