Contact Resistance of InGaN/GaN Light Emitting Diodes Grown on the Production Model Multi-Wafer Movpe Reactor

1998 ◽  
Vol 537 ◽  
Author(s):  
R.W. Chuang ◽  
A.Q. Zou ◽  
H.P. Lee ◽  
Z.J. Dong ◽  
F.F. Xiong ◽  
...  

AbstractWe report both the device fabrication and characterization of InGaN/GaN single quantum well LEDs grown on sapphire substrates using multi-wafer MOVPE reactor. To improve current spreading of the LEDs, a self-aligned process is developed to define LED mesa that is coated with a thin, semi-transparent Ni/Au (40 Å/40 Å) layer. A detailed study on the ohmic contact resistance of Ni/Cr/Au on p-GaN versus annealing temperatures is carried out on transmission line test structures. It was found that the annealing temperatures between 300 to 500°C yield the lowest specific contact resistance rc (0.016 Ω-cm2 at a current density of 66.7 mA/cm). Based on the extracted rc from the transmission line measurement, we estimate that the contact resistance of the p-type GaN accounts for ∼ 88% of the total series resistance of the LED.

1999 ◽  
Vol 4 (S1) ◽  
pp. 703-708 ◽  
Author(s):  
R.W. Chuang ◽  
A.Q. Zou ◽  
H.P. Lee ◽  
Z.J. Dong ◽  
F.F. Xiong ◽  
...  

We report both the device fabrication and characterization of InGaN/GaN single quantum well LEDs grown on sapphire substrates using multi-wafer MOVPE reactor. To improve current spreading of the LEDs, a self-aligned process is developed to define LED mesa that is coated with a thin, semi-transparent Ni/Au (40 Å/40 Å) layer. A detailed study on the ohmic contact resistance of Ni/Cr/Au on p-GaN versus annealing temperatures is carried out on transmission line test structures. It was found that the annealing temperatures between 300 to 500 °C yield the lowest specific contact resistance rc ( 0.016 Ω-cm2 at a current density of 66.7 mA/cm). Based on the extracted rc from the transmission line measurement, we estimate that the contact resistance of the p-type GaN accounts for ∼ 88% of the total series resistance of the LED.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


1995 ◽  
Vol 382 ◽  
Author(s):  
Patrick W. Leec ◽  
Geoffrey K. Reeves ◽  
Wei Zhou

ABSTRACTThe specific contact resistance, pc, of Au/Zn/Au, Ni/Zn/Ni/Au, Pd/Zn/Pt/Au and Pd/Mln/Sb/Pd/Au contacts to p-In0.47Ga0.53As/ InP has been measured as a function of layer thickness of Zn or Mn. All of the as-deposited contacts were ohmic, with pc = 1−2 × 10−5 Ω cm2. Increasing thickness of the Zn layer above 200 Å in the Au/Zn/Au contacts resulted in a minor decrease in pc while producing no change in the Ni/Zn/Ni/Au metallization. For the as-deposited Pd/Mn/Pd/Au contacts, the value of pc was independent of thickness of the Mn layer but differences in pc emerged at annealing temperatures of ≥ 250°. The analysis of these structures by RBS has shown an extensive intermixing of the metal layers at an annealing temperature of 450 °. In the Pd/Zn/Pt/Au contacts, the value of pc was reduced to a minimum value of 8 × 10−6 Ω cm2 by annealing at a temperature of 500 °. An examination of the Pd/Zn/Pt/Au configuration by RBS has shown that the Pt layer acted as a barrier for the indiffusion of the Au.


1993 ◽  
Vol 318 ◽  
Author(s):  
Patrick W. Leech ◽  
Geoffrey K. Reeves

ABSTRACTOhmic contacts to p-type InP with an In0.47Ga0.53As buffer layer and an interposed superlattice of 50 Å In0.47Ga0.53As/ 50 Å InP have been investigated. Initial studies of contacts to In0.47Ga0.53As/ InP without the superlattice structure have shown that Pd/Zn/Pd/Au metallization produced a lower specific contact resistance (pc = 1.1 × 10−4 Ω cm2) than Pd/Ge/Au, and over a wider range of anneal temperature than Au/Zn/Au. The incorporation of the superlattice in the p-In0.47Ga0.53As/ InP structure resulted in Pd/Zn/Pd/Au contacts with pc of 3.2 × 10−5 Ω cm2 as-deposited and 7.5 × 10−6 Ω.cm2 after a 500 °C anneal. The presence of Pd/Zn in the metallization was shown as important in reducing pc. Significant intermixing of the metal layers and In0.47Ga0.53As occured at ≥ 350 °C, as revealed by Rutherford backscattering spectrometry.


2006 ◽  
Vol 21 (12) ◽  
pp. 1738-1742 ◽  
Author(s):  
L Lewis ◽  
P P Maaskant ◽  
B Corbett

1999 ◽  
Vol 4 (S1) ◽  
pp. 684-690
Author(s):  
X. A. Cao ◽  
F. Ren ◽  
J. R. Lothian ◽  
S. J. Pearton ◽  
C. R. Abernathy ◽  
...  

Sputter-deposited W-based contacts on p-GaN (NA∼1018 cm−3) display non-ohmic behavior independent of annealing temperature when measured at 25°C. The transition to ohmic behavior occurs above ∼250°C as more of the acceptors become ionized. The optimum annealing temperature is ∼700°C under these conditions. These contacts are much more thermally stable than the conventional Ni/Au metallization, which shows a severely degraded morphology even at 700°C. W-based contacts may be ohmic as-deposited on very heavily doped n-GaN, and the specific contact resistance improves with annealing up to ∼900°C.


2018 ◽  
Vol 924 ◽  
pp. 385-388 ◽  
Author(s):  
Roberta Nipoti ◽  
Maurizio Puzzanghera ◽  
Maria Concetta Canino ◽  
Giovanna Sozzi ◽  
Paolo Fedeli

This study shows that a thin Ni film on Al/Ti/4H-SiC metal pads allows to preserve the pad form factor during a 1000 °C/2 min treatment, provided that the Al and Ti film thicknesses are sufficiently thin. Moreover, by reducing the Al to Ti thickness ratio, droplet formation in the contact area is avoided and a mirror-like appearance is obtained. This optimal contact morphology corresponds to a specific contact resistance of few 10-4Ωcm2at room temperature on p-type 4H-SiC with resistivity in the range 0.1 – 1 Ωcm.


2000 ◽  
Vol 640 ◽  
Author(s):  
Xaiobin Wang ◽  
Stanislav Soloviev ◽  
Ying Gao ◽  
G. Straty ◽  
Tangali Sudarshan ◽  
...  

ABSTRACTOhmic contacts to p-type SiC were fabricated by depositing Al/Ni and Al/Ti followed by high temperature annealing. A p-type layer was fabricated by Al or B diffusion from vapor phase into both p-type and n-type substrates. The thickness of the diffused layer was about 0.1–0.2 μm with surface carrier concentration of about 1.0×1019cm−3. Metal contacts to a p-type substrate with a background doping concentration of 1.2×1018cm−3, without a diffusion layer, were also formed. The values of specific contact resistance obtained by Circular Transmission Line Method (CTLM) and Transfer Length Method (TLM) for the n-type substrate, and by Cox & Strack method for p-type substrate, respectively, varied from 1.3×10−4Ωcm2 to 8.8×10−3 Ωcm2. The results indicate that the specific contact resistance could be significantly reduced by creating a highly doped diffused surface layer.


2009 ◽  
Vol 12 (9) ◽  
pp. H315 ◽  
Author(s):  
Ray-Ming Lin ◽  
Yi-Lun Chou ◽  
Wan-Ching Tseng ◽  
Chia-Lung Tsai ◽  
Jen-Chih Li ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 639-642
Author(s):  
Duy Minh Nguyen ◽  
Christophe Raynaud ◽  
Mihai Lazar ◽  
Heu Vang ◽  
Dominique Planson

N+ 4H-SiC commercial substrates with n-type epilayers have been used to realize bipolar diodes and TLM structures. The p-type emitter of diodes was realized by Al implantations followed by a post-implantation annealing with or without a graphite capping layer. Ohmic contacts were formed by depositing Ti/Ni on the backside and Ni/Al on the topside of the wafer. It appears that capping the sample during the annealing reduces considerably the surface roughness and the specific contact resistance. Sheet resistance and specific contact resistance as low as 2kΩ/□ and respectively 1.75×10-4 Ωcm² at 300 K have been obtained. I-V measurements as a function of temperature have been performed from ~100 to ~500 K. The variations of the series resistance vs. temperature can be explained by the freeze-out of carriers and by the variation of carrier mobility.


Sign in / Sign up

Export Citation Format

Share Document