First-Principles Total Energy Study of NbCr2 + V Laves Phase Ternary System

1998 ◽  
Vol 552 ◽  
Author(s):  
Alim Ormeci ◽  
S. P. Chen ◽  
John M. Wills ◽  
R. C. Albers

ABSTRACTThe C15 NbCr2 + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr2 + V compounds, V atoms substitute Cr atoms only.

1999 ◽  
Author(s):  
A. Ormeci ◽  
S.P. Chen ◽  
J.M. Wills ◽  
R.C. Albers

Author(s):  
Shubha Dubey ◽  
Gitanjali Pagare ◽  
Ekta Jain ◽  
Sankar P. Sanyal

The structural properties and electronic properties of the intermetallic compound ErPb3 which crystallize in AuCu3 type structure (AB3) are studied by means of first principles total energy calculation using full potential linearized plane wave method (FP-LAPW) within the generalized gradient approximation of Perdew, Burke and Ernzrhof (PBE) and local spin density approximation (LSDA) for the exchange correlation functional and including spin magnetic calculation. The total energy is computed as a function of volume and fitted to the Birch-Murnaghan equation of state. The ground state properties of this compound such as equilibrium lattice parameter (a0), bulk modulus (B), and its pressure derivative (B’) are calculated and compared with the available experimental results. We find good agreement with the other theoretical and experimental results. For the compounds, the values of lattice constants obtained by PBE-GGA overestimates and by LSDA underestimates the available experimental values for the same, which verifies the reliability of the present calculation. The value obtained for the bulk modulus is 50.63 GPa. The analysis of electronic properties is achieved by the calculation of the band structures and the density of states in both the spin up and spin down modes, which show a metallic character of ErPB3 due to zero band gap. The values of calculated density of states are found to be 0.36 eV/states and 11.46 eV/states in spin-up and spin-down mode respectively. The calculated magnetic moment (μm) of ErPb3 is 2.06.


SPIN ◽  
2020 ◽  
Vol 10 (03) ◽  
pp. 2050022 ◽  
Author(s):  
K. Belkacem ◽  
Y. Zaoui ◽  
S. Amari ◽  
L. Beldi ◽  
B. Bouhafs

The first-principles approach based on density functional theory (DFT) and the full-potential linearized augmented plane-wave method were employed to investigate the structural, elastic, electronic and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. The generalized gradient approximation (GGA) as parameterized by Perdew, Burke and Ernzerhof (PBE) and the modified Becke–Johnson exchange potential were used. As far as we know, we present our results which for the first time quantitatively account for the electronic structures and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. From the total energy calculation using three possible atomic configurations ([Formula: see text], [Formula: see text] and [Formula: see text]), it is found that the Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys are more stable in the ferromagnetic [Formula: see text]-phase. From our estimated elastic constants [Formula: see text], it is found that all the considered Heusler alloys are mechanically stable in the [Formula: see text]-phase. We have also investigated the robustness of the half-metallicity with respect to the variation of lattice constants in these alloys. We have found that these alloys are half-metallic ferromagnets (HMFs) with a magnetic moment of 2[Formula: see text][Formula: see text] per formula unit at their equilibrium volumes. The spin-polarized electronic band structure and density of states of these quaternary half-Heusler alloys calculated by GGA (mBJ-GGA) show that the minority spin channels have metallic nature and the majority spin channels have a semiconductor character with half-metallic gaps of 0.49[Formula: see text]eV (2.17[Formula: see text]eV), 0.72[Formula: see text]eV (2.28[Formula: see text]eV) and 0.96[Formula: see text]eV (2.22[Formula: see text]eV) for NaCaNO, NaSrNO and NaBaNO quaternary half-Heusler alloys, respectively. Analysis of the density of states and the spin charge density of these quaternary alloys indicates that their magnetic moments mainly originate from the strong spin-polarization of 2[Formula: see text] states of N atoms and O atoms.


Open Physics ◽  
2008 ◽  
Vol 6 (4) ◽  
Author(s):  
Ercan Uçgun ◽  
Hamza Ocak

AbstractWe calculate the electronic properties of austenite and martensite Fe-9%Mn alloys using the self consistent full-potential linearized-plane-wave method under the generalized gradient approximation full lattice relaxation. By minimizing total-energy, the lattice constants in their ground states were determined. We discuss the total energy dependence of the volume, and density of states (DOS).


1996 ◽  
Vol 51 (5-6) ◽  
pp. 527-533 ◽  
Author(s):  
K. Schwarz ◽  
H. Ripplinger ◽  
P. Blaha

Abstract A first-principles method for the computation of electric field gradients (EFG) is illustrated for various borides. It is based on energy band calculations using the full-potential linearized aug-mented plane wave (LAPW) method within density functional theory. From the self-consistent charge density distribution the EFG is obtained without further approximations by numerically solving Poisson's equation. The dependence of the EFG on structure, chemical composition or substitution is demonstrated for the diborides MB2 (with M = Ti, V, Cr, Zr, Nb, Mo, and Ta), the hexaborides (CaB6, SrB6 and BaB6) and boron carbide which is closely related to α-boron.


Author(s):  
Wen Liu ◽  
Chi Zhang ◽  
Chunge Wang ◽  
Xiang Yan ◽  
Xiaoxiong Hu ◽  
...  

Abstract In this work, using the first-principles method, the alloying stability, electronic structure, and elastic properties of Al-based intermetallics were investigated. It was found that these alloys have a strong alloying ability and structural stability due to the negative formation energies and the cohesive energies. The valence bonds of these intermetallic compounds are attributed to the valence electrons of Cu 3δ states for AlCu3, Cu 3δ and Zr 4δ states for AlCu2Zr, and Al 3s, Zr 5s and 4δ states for AlZr3, respectively. Furthermore, the correlation between elastic properties of these intermetallic compounds and their electronic structures was revealed. The results show that structural parameters and elastic properties such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy agreed well with experimental results.


1996 ◽  
Vol 460 ◽  
Author(s):  
P. G. Kotula ◽  
I. M. Anderson ◽  
F. Chu ◽  
D. J. Thoma ◽  
J. Bentley ◽  
...  

ABSTRACTSite occupancies in three C15-structured AB2(X) Laves phases have been determined with Atom Location by CHanneling Enhanced MIcroanalysis (ALCHEMI). In NbCr2(V), the results are consistent with exclusive site occupancies of Nb for the A sublattice and Cr and V for the A sublattice. The B-site occupancy of V can be interpreted in terms of electronic structure. In NbCr2(Ti), the results are consistent with Ti partitioning mostly to the A sites with some anti-site defects likely. In HfV2(Nb), the results are consistent with Nb partitioning between the A and A sites. The results of the ALCHEMI analyses of these ternary C15 Laves phase materials are discussed with respect to previously determined phase diagrams and first-principles total energy and electronic structure calculations.


1998 ◽  
Vol 532 ◽  
Author(s):  
A. Antonellip ◽  
Efthimios Kaxiras ◽  
D. J. Chadi

ABSTRACTThe crystalline structure surrounding a single neutral vacancy in silicon is investigated through extensive first-principles total-energy calculations. The results indicate the existence of two distinct distortions of the lattice around the vacancy with essentially the same formation energies at zero pressure, but, however, with different formation volumes. The effect of hydrostatic and biaxial stresses on the relative concentration of each distortion is discussed, suggesting experimental ways to investigate the crystalline structure around the single vacancy and its role as a mediator of atomic diffusion in silicon.


1994 ◽  
Vol 364 ◽  
Author(s):  
Michael J. Mehl

AbstractThe discovery of ductile cubic phases in the Nb-Ti-Al system has led to increased study of these high-temperature intermetallics. I have performed first-principles calculations for ordered crystal structures in this system, paying particular attention to the Nb7Ti7Al2 structure. Somewhat surprisingly, the electronic density of states, lattice constant, and bulk modulus are nearly independent of the ordering of these materials, even though the changes in the total energy are significant.


1995 ◽  
Vol 408 ◽  
Author(s):  
D. Iotova ◽  
N. Kioussis ◽  
S. P. Lim ◽  
S. Sun ◽  
R. Wu

AbstractThe elastic constants of the L12-type ordered nickel-based intermetallics Ni3X (X = Mn, Al, Ga, Si, Ge), have been calculated by means of ab initio total-energy electronic structurecalculations based on the full-potential linear-muffin-tin-orbital (FLMTO) method. Theorigins in the electronic structure of the variation of the elastic constants, bulk and shearmoduli are investigated across the series, and the effects of the anisotropy of bonding chargedensity on the shear anisotropy factor and the degree of ductility is discussed.


Sign in / Sign up

Export Citation Format

Share Document