Thickness Effect on Cracking Phenomena and Mechanical Properties of Submicron Glass Thin Films Deposited on a Polymer Substrate

1998 ◽  
Vol 555 ◽  
Author(s):  
M. Yanaka ◽  
Y. Kato ◽  
Y. Tsukahara ◽  
N. Takeda

AbstractThe multiple cracking progress in thin SiOx films deposited on polyethylene terephthalate (PET) substrates during tensile tests were investigated. Five kinds of specimens with different SiOx film thicknesses of 43, 67, 90, 120 and 320 nm were prepared. With the appropriate estimation of the residual strain in the film, the crack onset stress was found to be nearly proportional to the minus one-half power of the thickness. After the cracking is sufficiently developed, on the other hand, thinner specimens showed higher crack density than thicker ones. In order to predict the multiple cracking progress, stress distributions in the cracked films were calculated both by the elastic-plastic finite element analysis and modified shear lag analysis. The prediction, under the assumption of the unique stress criterion, explained reasonably well the multiple cracking progress obtained in the experiments.

2004 ◽  
Vol 126 (1) ◽  
pp. 129-135 ◽  
Author(s):  
A. Tamer O¨zdemir ◽  
Lyndon Edwards

Many analytical and experimental techniques utilize two-dimensional analysis approach to determine residual strains and stresses at cold expanded holes. In the present work, a recently developed technique of hole drilling was used to sketch stress patterns in three-dimension at a particular orientation of split-sleeve cold expanded holes. At this orientation, similarities were obtained in between the present results and the stress distributions measured by Fourier series expansion, neutron diffraction methods and prediction of a recent finite element analysis. It is clear that after cold expansion there are significant variations in residual hoop stresses at different sections through the thickness of the plate. However, finish reaming and de-burring around the hole redistributes residual stresses such that hoop stresses adjacent to the hole along its entire length becomes more compressive and almost uniform. Finally a correlation between stress pattern and crack profile, displaying the through-thickness effect was shown.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4585
Author(s):  
Marian Bulla ◽  
Stefan Kolling ◽  
Elham Sahraei

The present study is focused on the development of a material model where the orthotropic-visco-elastic and orthotropic-visco-plastic mechanical behavior of a polymeric material is considered. The increasing need to reduce the climate-damaging exhaust gases in the automotive industry leads to an increasing usage of electric powered drive systems using Lithium-ion (Li-ion) batteries. For the safety and crashworthiness investigations, a deeper understanding of the mechanical behavior under high and dynamic loads is needed. In order to prevent internal short circuits and thermal runaways within a Li-ion battery, the separator plays a crucial role. Based on results of material tests, a novel material model for finite element analysis (FEA) is developed using the explicit solver Altair Radioss. Based on this model, the visco-elastic-orthotropic, as well as the visco-plastic-orthotropic, behavior until failure can be modeled. Finally, a FE simulation model of the separator material is performed, using the results of different tensile tests conducted at three different velocities, 0.1 mm·s−1, 1.0 mm·s−1 and 10.0 mm·s−1 and different orientations of the specimen. The purpose is to predict the anisotropic, rate-dependent stiffness behavior of separator materials in order to improve FE simulations of the mechanical behavior of batteries and therefore reduce the development time of electrically powered vehicles and consumer goods. The present novel material model in combination with a well-suited failure criterion, which considers the different states of stress and anisotropic-visco-dependent failure limits, can be applied for crashworthiness FE analysis. The model succeeded in predicting anisotropic, visco-elastic orthotropic and visco-plastic orthotropic stiffness behavior up to failure.


2012 ◽  
Vol 531 ◽  
pp. 609-612
Author(s):  
Xue Dong Han ◽  
Li Wei ◽  
Gang Luo ◽  
Li Ping Chang

The intensity of the joint in the bottom chord would affect the quality of the whole bridge because that the force of the bottom-through bridge is transferred mainly through the bottom chord, and the members of the truss connect each other by using the thread. In this paper, the bottom chord around the tapped holes is reinforced by composite material , and the stress on the bottom chord is analyzed before and after the reinforcement using the finite element analysis method, and the stress distributions in the directions of X,Y and Z on every layer of the composite material under the bilateral reinforcing condition are extracted and compared. The results show that: Reinforcing the bottom chord around the tapped holes using the composite material can change the stress level of the bottom chord effectively, helping to improve the quality of the construction of the steel bridge and the effect of the bilateral reinforcing is better than the unilateral reinforcing and providing certain reference for the security of the steel truss bridge


Author(s):  
Yasumasa Shoji ◽  
Toshiyuki Sawa

The bolt strength is determined based on the concentrated bolt stress at the thread roots. The allowable stress is determined so that the thread root will not yield by the pretension and the external loads, using the stress concentration factor obtained as 3 to 5 from experiments. However, the concentration factor is not clear so far, as it is quite difficult to measure the stress at such a localized region. On the other hand, structural analysis, namely finite element analysis, has the possibility to provide the most-likely stress at the thread root. In this paper, a special technique, a.k.a. submodelling, is used to calculate the stress distribution at thread surfaces very precisely. The result will be useful to solve any stress related problems.


2011 ◽  
Vol 120 ◽  
pp. 56-60
Author(s):  
Han Wu Liu ◽  
Zhi Qiang Li ◽  
Yun Hui Du ◽  
Peng Zhang

With the development trend of constant speeding and heavy loading of the railway transportation, the freight train wheels which take the way of touching area breaking are in the bad conditions of strong friction, fever load and big wheel track forces. After many times’ repeated breaking, the wheels will come to be thermal fatigue, then, result in expired puncture. In this article, according to the actual work condition of the freight train wheel, its temperature and stress fields in the process of an urgently breaking when the wheel speed is 120 km/h with the 21 tons shaft weight were analyzed and simulated by Finite Element Method. The relationship between the injury occurring on the touching area of freight wheel and the fields of the temperature and stress was also studied. The research results showed that the maximum values of the temperature and thermal stress lied in the breaking process all locate in the touching friction area between the breaking and the wheel, and the temperature rises continuously with the breaking process going on. When the value of the temperature gets to the crest value, it slowly descends. The wheel temperature reduces from the touching area to the wheel shaft, and the nearer of the distance to wheel shaft, the lower of the temperature and stress values. After the end of the breaking process, the temperature into the wheel is higher than that on the touching area, and the maximum stress exists under the wheel touching area.


2010 ◽  
Vol 123-125 ◽  
pp. 399-402
Author(s):  
Fang Chao Xu ◽  
Kazuhiro Kusukawa

Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (BNT) films were deposited on 1 mm thick pure titanium(Ti) substrates by a hydrothermal method. Tensile tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition. In the tensile test, the behavior of BNT film exfoliation was investigated by the replica method. The critical Ti substrate strain inducing BNT film exfoliation was determined by the aid of finite element analysis (FEM). In this study, the results revealed that BNT film exfoliations were caused by the strain of Ti substrate, and the mechanical polish pretreatment improved the adhesion of BNT film to Ti substrate.


Sign in / Sign up

Export Citation Format

Share Document