Through-Thickness Residual Stress Distribution After the Cold Expansion of Fastener Holes and Its Effect on Fracturing

2004 ◽  
Vol 126 (1) ◽  
pp. 129-135 ◽  
Author(s):  
A. Tamer O¨zdemir ◽  
Lyndon Edwards

Many analytical and experimental techniques utilize two-dimensional analysis approach to determine residual strains and stresses at cold expanded holes. In the present work, a recently developed technique of hole drilling was used to sketch stress patterns in three-dimension at a particular orientation of split-sleeve cold expanded holes. At this orientation, similarities were obtained in between the present results and the stress distributions measured by Fourier series expansion, neutron diffraction methods and prediction of a recent finite element analysis. It is clear that after cold expansion there are significant variations in residual hoop stresses at different sections through the thickness of the plate. However, finish reaming and de-burring around the hole redistributes residual stresses such that hoop stresses adjacent to the hole along its entire length becomes more compressive and almost uniform. Finally a correlation between stress pattern and crack profile, displaying the through-thickness effect was shown.

2011 ◽  
Vol 487 ◽  
pp. 184-188
Author(s):  
Shu Tao Huang ◽  
Li Zhou ◽  
J. Li

Commercial finite element modeling software ANSYS was used to calculate the stress distributions of diamond pick at different loads. The three-dimension model of the pick was built and the direction and magnitude of load were varied to determine their effect on the stress distributions of diamond pick. The results show that the stresses located on the pick increase with the increasing of the normal and lateral pressure, and if the maximum normal pressure and lateral pressure are not higher than 480 kN and 150 kN, respectively, the diamond pick will not be damaged. The results obtained can provide available data for pick selection, design and performance.


1998 ◽  
Vol 555 ◽  
Author(s):  
M. Yanaka ◽  
Y. Kato ◽  
Y. Tsukahara ◽  
N. Takeda

AbstractThe multiple cracking progress in thin SiOx films deposited on polyethylene terephthalate (PET) substrates during tensile tests were investigated. Five kinds of specimens with different SiOx film thicknesses of 43, 67, 90, 120 and 320 nm were prepared. With the appropriate estimation of the residual strain in the film, the crack onset stress was found to be nearly proportional to the minus one-half power of the thickness. After the cracking is sufficiently developed, on the other hand, thinner specimens showed higher crack density than thicker ones. In order to predict the multiple cracking progress, stress distributions in the cracked films were calculated both by the elastic-plastic finite element analysis and modified shear lag analysis. The prediction, under the assumption of the unique stress criterion, explained reasonably well the multiple cracking progress obtained in the experiments.


Author(s):  
Masood Jamshidi ◽  
Mohammad Taghi Ahmadian

Human body is constantly under the influence of acceleration loads in environments such as combat flying. This study investigates the effect of body acceleration on human heart function by using finite element analysis. The nonlinear mechanical behavior of myocardium is modeled by Yeoh hyperelastic model. Stress-strain curves of myocardium are determined based on uniaxial compression tests on bovine heart samples. Nonlinear least square curve fitting is conducted in order to obtain material parameters. Heart geometrical modeling in three-dimension is done by segmentation of cardiac MRI images. Obtained material coefficients are assigned to the constructed heart model and appropriate pressure and acceleration loads are considered. By application of finite element method, stress distributions are calculated. Results indicate average stress in the internal wall of left ventricle is increased by 9.4% from 15.9 to 17.4kPa as the acceleration increases from +1G to +6G.


Author(s):  
Jinhua Shi ◽  
Granson Lee ◽  
David Blythe ◽  
John Buckland ◽  
Yuebao Lei ◽  
...  

In order to assess postulated defects in the butt weld joining a 90 degree elbow to a seamless straight pipe, both axial and hoop stress components at this position are required. ASME III NB-3685 provides a method of calculating elbow stresses. However, this gives the maximum stress values in the elbow and applies to the central section of the bend. If these values are directly used in the defect assessments of welds at the ends of the elbow, the assessment results will be overly conservative. In order to obtain appropriate defect assessment results, more accurate axial and hoop stress distributions at the elbow ends are desirable. In this paper, the axial and hoop stress distributions at the elbow ends are predicted by deriving generalized stress relationships between the elbow end and the central section of the elbow, based on detailed finite element analyses and ASME III NB-3685 calculations. In order to do so, a series of small displacement elastic 3D finite element analyses have been performed. The finite element results were then compared with the ASME III NB-3685 stress predictions. Finally, the axial and hoop stress relationships between the elbow end and the central section of the elbow for internal pressure, in-plane moment and out-of-plane moment were derived. A comparison of the calculated stress values using the derived equations, the finite element analysis results and the ASME III NB-3685 stress calculations confirms that the derived stress relationships are appropriate to predict the axial and hoop stresses at the elbow ends. The objective of this paper is to show: 1) the ASME III NB-3685 stress calculations agree well with the 3D finite element analysis results at the central section of the elbow and 2) the derived stress relationships are appropriate to predict the axial and hoop stresses at the elbow ends.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12068
Author(s):  
Timo van Leeuwen ◽  
G. Harry van Lenthe ◽  
Evie E. Vereecke ◽  
Marco T. Schneider

The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms were CT scanned in five standardized positions of the hand as a basis for the generation of parametric finite element models to compare grasps. We have developed a finite element analysis (FEA) approach to investigate stress distribution patterns in the TMC joint associated with each grasp type. We hypothesized that the simulated stress distributions for each position would correspond with the patterns expected from a saddle-shaped joint. However, we also expected differences in stress patterns arising from instraspecific variations in morphology. The models showed a high agreement between simulated and expected stress patterns for each of the five grasps (86% of successful simulations), while partially (52%) and fully (14%) diverging patterns were also encountered. We identified individual variations of key morphological features in the bonobo TMC joint that account for the diverging stress patterns and emphasized the effect of interindividual morphological variation on joint functioning. This study gives unprecedented insight in the form-function interactions in the TMC joint of the bonobo and provides an innovative FEA approach to modelling intra-articular stress distributions, a valuable tool for the study of the primate thumb biomechanics.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 314
Author(s):  
Miroslav Pástor ◽  
Martin Hagara ◽  
Ivan Virgala ◽  
Adam Kaľavský ◽  
Alžbeta Sapietová ◽  
...  

This paper presents a uniquely designed device combining the hole-drilling technique with two optical systems based on the PhotoStress and digital image correlation (DIC) method, where the digital image correlation system moves with the cutting tool. The authors aimed to verify whether the accuracy of the drilled hole according to ASTM E837-13a standard and the positioning accuracy of the device were sufficient to achieve accurate results. The experimental testing was performed on a thin specimen made from strain sensitive coating PS-1D, which allowed comparison of the results obtained by both methods. Although application of the PhotoStress method allows analysis of the strains at the edge of the cut hole, it requires a lot of experimenter’s practical skills to assess the results correctly. On the other hand, the DIC method allows digital processing of the measured data. However, the problem is not only to determine the data at the edge of the hole, the results also significantly depend on the smoothing levels used. The quantitative comparison of the results obtained was performed using finite element analysis.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


2005 ◽  
Vol 127 (2) ◽  
pp. 271-276 ◽  
Author(s):  
D. N. Dilley ◽  
D. A. Stephenson ◽  
P. V. Bayly ◽  
A. J. Schaut

Drill chatter degrades hole roundness, hole size, and tool life. This wastes time and money in tools, scrap, and hole rework. Chatter prediction in milling and turning has shown significant benefit to industry; however, researchers have been unable to accurately predict chatter in drilling applications. In the past, the drill, including the chisel edge, was modeled as either a fixed-fixed or fixed-pinned beam (Tekinalp, O., and Ulsoy, A. G., 1989, “Modeling and Finite Element Analysis of Drill Bit Vibrations,” ASME J. Eng. Indust. 111, pp. 148–154), but more recent research (Dilley, D. N., Bayly, P. V., and Schaut, A. J., 2005, “Effects of the Chisel Edge on the Chatter Frequency in Drilling,” J. Sound Vib., 281, pp. 423–428) has shown that a fixed-embedded model using springs improves frequency matching. The effects of the drill margins on dynamics have not been studied. The fixed-fixed or fixed-pinned model will be shown to be inappropriate for modeling the effects of margin engagement, while the spring-end boundary condition can better approximate the frequency increase observed experimentally as the drill margins engage deeper into the hole. In addition, the shifted frequency is well below the frequency found from an analytical fixed-fixed or fixed-pinned beam. Evidence that the margins cause the frequency shift is seen in three-dimensional waterfall plots that show this shift for pilot hole drilling (in which the margins are engaged), but not for tube drilling (in which margins are not engaged).


Sign in / Sign up

Export Citation Format

Share Document