Enhanced Optical Emission from GaN Film Grown on Composite Intermediate Layers

1999 ◽  
Vol 572 ◽  
Author(s):  
Xiong Zhang ◽  
Soo-Jin Chua ◽  
Peng Li ◽  
Kok-Boon Chong

ABSTRACTGaN films have been grown on silicon-(001) substrate with specially designed composite intermediate layers consisting of an ultra-thin amorphous silicon layer and a GaN/AlxGa1−xN (x=0.2) multilayered buffer by metal-organic chemical vapor deposition and characterized by photoluminescence and x-ray diffraction spectroscopy. It was found that the GaN films grown on the composite intermediate layers gave comparable or slightly stronger optical emission than those grown on sapphire substrate under identical reactor configuration. Moreover, the full width at half maximum for the GaN band-edge-related emission is 40 meV at room temperature. This fact indicates that, by using the proposed composite intermediate layers, the crystalline quality of GaN-based nitride grown on a silicon substrate can be significantly improved.


2011 ◽  
Vol 413 ◽  
pp. 11-17 ◽  
Author(s):  
Bin Feng Ding ◽  
Yong Quan Chai

A GaN epilayer with tri-layer AlGaN interlayer grown on Si (111) by metal-organic chemical vapor deposition (MOCVD) method was discussed by synchrotron radiation x-ray diffraction (SRXRD) and Rutherford backscattering (RBS)/C. The crystal quality of the epilayer is very good with a χmin=2.1%. According to the results of the θ-2θ scan of GaN(0002) and GaN(1122), the epilayer elastic strains in perpendicular and parallel directions were calculated respectively to be-0.019% and 0.063%. By the angular scan using RBS/C around a symmetric [0001] axis and an asymmetric [1213] axis in the (1010) plane of the GaN layer, the tetragonal distortion (eT ) were determined to be 0.09%. This result coincides with that from SRXRD perfectly. The strain decreases gradually towards the near-surface layer, which will avoid the film cracks efficiently and improve the crystal quality of the GaN epilayer remarkably.



2008 ◽  
Vol 1068 ◽  
Author(s):  
KungLiang Lin ◽  
Edward-Yi Chang ◽  
Tingkai Li ◽  
Wei-Ching Huang ◽  
Yu-Lin Hsiao ◽  
...  

ABSTRACTGaN film grown on Si substrate with AlN/AlxGa1−xN buffer is studied by low pressure metal organic chemical vapor deposition (MOCVD) method. The AlxGa1−xN film with Al composition varying from 0∼ 0.66 was used. The correlation of the Al composition in the AlxGa1−xN film with the stress of the GaN film grown was studied using high resolution X-ray diffraction including symmetrical and asymmetrical ω/2θscans and reciprocal space maps. It is found that with proper design of the Al composition in the AlxGa1−xN buffer layer, crack-free GaN films can be successfully grown on Si (111) substrates using AlN and AlxGa1−xN buffer layers.



2009 ◽  
Vol 1202 ◽  
Author(s):  
Mohammad Ahmad Ebdah ◽  
Martin E. Kordesch ◽  
Andre Anders ◽  
Wojciech M. Jadwisienczak

AbstractIn this work, europium implanted InGaN/GaN SL with a fixed well/barrier thickness ratio grown by metal-organic chemical-vapor deposition (MOCVD) on GaN/(0001) sapphire substrate were investigated. The as-grown and Eu ion implanted InGaN/GaN SLs were annealed at different temperatures ranging from 600°C to 950°C in nitrogen ambient. The quality of the SL interfaces in undoped and implanted structures has been investigated by X-ray diffraction (XRD) at room temperature. The characteristic satellite peaks of SLs were measured for the (0002) reflection up to the second order in the symmetric Bragg geometry. The XRD simulation spectrum of the as-grown SL agrees well with the experimental results. The simulation results show x=0.06 atomic percent the InGaN well sub-layers, with thicknesses of 2.4 and 3.3 nm for single InGaN well and GaN barrier, respectively. It was observed that annealing of the undoped SL does not significantly affect the interfacial quality of the superstructure, whereas, the Eu ion implanted InGaN/GaN SL undergo partial induced degradation. Annealing the implanted SLs shows a gradual improvement of the multilayer periodicity and a reduction of the induced degradation with increasing the annealing temperature as indicated by the XRD spectra.



2014 ◽  
Vol 896 ◽  
pp. 192-196 ◽  
Author(s):  
Aip Saripudin ◽  
H. Saragih ◽  
Khairurrijal ◽  
Khairurrijal ◽  
Pepen Arifin

Co:TiO2 (cobalt-doped titanium dioxide) thin films have been deposited on the n-type Si (100) substrate at the temperatures range of 325°C 450°C using MOCVD (metal organic chemical vapor deposition) technique. We investigated the effect of growth temperature on the structural and morphological quality of Co:TiO2 thin films. The structure of Co:TiO2 thin films were characterized by XRD while the morphology and the thickness of films were characterized by SEM. The XRD results reveal that all films show the anatase structure and the dominant orientation of anatase phase depends on the growth temperature. The grain size of crystal increases as the growth temperature increases. We also reveal that the growth rate of Co:TiO2 film has a maximum value at the growth temperature of 400°C.





1999 ◽  
Vol 606 ◽  
Author(s):  
D. Barreca ◽  
F. Benetollo ◽  
M. Bozza ◽  
S. Bozza ◽  
G. Carta ◽  
...  

AbstractDeposition of thin films of Co- and Mn- oxides as well as of their mixtures with ZrO2 have been carried out by MOCVD using Co(C5H5)2, Mn(C5F6HO2)2(THF)2and (C5Hs)2Zr(CH3)2as precursors. XRD and XPS analyses of the obtained deposits are reported. Introduction of water vapor into the reactor chamber during the flow of the precursors improved their decomposition efficiency and the quality of the films.



1989 ◽  
Vol 148 ◽  
Author(s):  
N. Noto ◽  
S. Nozaki ◽  
T. Egawa ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

ABSTRACTWe have studied heteroepitaxial growth of GaAs on Si using an AlxGa1−xP intermediate layer in an atmospheric-pressure metal organic chemical vapor deposition (NOCVD) reactor. The crystallinity of the GaAs layer depends on AlP composition(x) of the intermediate layer. The bett crystal quality of GaAs layer is obtained when the AlP composition(x) of the intermediate layer is close to 0.5. The X-ray FWHX of 180 arcs and the etch pit density (EPD) of 2.5 × 107cm−2 were obtained in this GaAs/AlGaP/Si structure.



1998 ◽  
Vol 541 ◽  
Author(s):  
Nan Chen ◽  
G. R. Bai ◽  
O. Auciello ◽  
R. E. Koritala ◽  
M. T. Lanagan

AbstractSingle-phase polycrystalline PbZrO3 (PZ) thin films, 3000-6000 A thick, have been grown by metal-organic chemical vapor deposition (MOCVD) on (111)Pt/Ti/SiO2/Si substrates at ≍525°C. X-ray diffraction analysis indicated that the PZ films grown on (111)Pt/Ti/SiO2/Si (Pt/Tgi/Si) showed preferred pseudocubic (110) orientation. In contrast, PZ films grown on 150 A thick PbTiO3 (PT) template layers exhibited a pseudocubic (100) preferred orientation, and PZ films deposited on TiO2 template layers consisted of randomly oriented grains. The PZ films grown on Pt/Ti/Si with or without templates exhibited dielectric constants of 120-200 and loss tangents of 0.01-0.0. The PZ films with (110) orientation exhibited an electric-field-inducedtransformation from the antiferroelectric phase to the ferroelectric phase with a polarization of ≍34 µC/cm2, and the energy that was stored during switching was 7.1 J/cm3. The field needed to excite the ferroelectric state and that needed to revert to the antiferroelectric state were 50 and 250 kV/cm, respectively. Relationships between the MOCVD processing and the film microstructure and properties are discussed.





Sign in / Sign up

Export Citation Format

Share Document