scholarly journals Properties and Orientation of Antiferroelectric Lead Zirconate Thin Films Grown by MOCVD

1998 ◽  
Vol 541 ◽  
Author(s):  
Nan Chen ◽  
G. R. Bai ◽  
O. Auciello ◽  
R. E. Koritala ◽  
M. T. Lanagan

AbstractSingle-phase polycrystalline PbZrO3 (PZ) thin films, 3000-6000 A thick, have been grown by metal-organic chemical vapor deposition (MOCVD) on (111)Pt/Ti/SiO2/Si substrates at ≍525°C. X-ray diffraction analysis indicated that the PZ films grown on (111)Pt/Ti/SiO2/Si (Pt/Tgi/Si) showed preferred pseudocubic (110) orientation. In contrast, PZ films grown on 150 A thick PbTiO3 (PT) template layers exhibited a pseudocubic (100) preferred orientation, and PZ films deposited on TiO2 template layers consisted of randomly oriented grains. The PZ films grown on Pt/Ti/Si with or without templates exhibited dielectric constants of 120-200 and loss tangents of 0.01-0.0. The PZ films with (110) orientation exhibited an electric-field-inducedtransformation from the antiferroelectric phase to the ferroelectric phase with a polarization of ≍34 µC/cm2, and the energy that was stored during switching was 7.1 J/cm3. The field needed to excite the ferroelectric state and that needed to revert to the antiferroelectric state were 50 and 250 kV/cm, respectively. Relationships between the MOCVD processing and the film microstructure and properties are discussed.

2000 ◽  
Vol 15 (9) ◽  
pp. 1962-1971 ◽  
Author(s):  
R. E. Koritala ◽  
M. T. Lanagan ◽  
N. Chen ◽  
G. R. Bai ◽  
Y. Huang ◽  
...  

Polycrystalline Pb(ZrxTi1−x)O3 thin films with x = 0.6 and 1.0 were deposited at low temperatures (450–525 °C) on (111)Pt/Ti/SiO2/Si substrates by metalorganic chemical vapor deposition. The films were characterized by x-ray diffraction, electron microscopy, and electrical measurements. The texture of the films could be improved by using one of two template layers: PbTiO3 or TiO2. Electrical properties, including dielectric constants, loss tangents, polarization, coercive field, and breakdown field, were also examined. PbZrO3 films on Pt/Ti/SiO2/Si with a pseudocubic (110) orientation exhibited an electric-field-induced transformation from the antiferroelectric phase to the ferroelectric phase. The effect of varying processing conditions on the microstructure and electrical properties of the films is discussed.


1998 ◽  
Vol 541 ◽  
Author(s):  
C. H. Lin ◽  
H. C. Kuo ◽  
G. E. Stillman ◽  
Haydn Chen

AbstractHighly (100) textured pseudo-cubic Pb(ScTa)1−xTixO3 (x=0-0.3) (PSTT) thin films were grown by metal-organic chemical vapor deposition (MOCVD) on LaNiO3 (LNO) electrode buffered Si substrates at 650 °C. The microstructure and chemical uniformity were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and nanoprobe X-ray energy dispersive spectroscopy (EDS). The temperature dependence of dielectric properties and P-E behavior were measured. A shift of Curie temperature of these PST-based thin films due to Ti addition was demonstrated, Furthermore, the pyroelectric properties of these thin films were estimated.


1998 ◽  
Vol 541 ◽  
Author(s):  
P. Lu ◽  
S. He ◽  
F. X. Li ◽  
Q. X. Jia

AbstractConductive RuO2 thin films have been grown epitaxially on (100) MgO and (100) LaAlO3 substrates by metal-organic chemical vapor deposition(MOCVD) at different temperatures. The microstructural properties of the RuO2 films have been studied using x-ray diffraction and scanning electron microscopy. Different growth and microstructure properties were observed for the films deposited on the two substrates. The films on MgO are epitaxial at deposition temperatures as low as 350°C, and consist of two variants with an orientation relationship given by (110) RuO2 /(100) MgO and [001] RuO2//[011]MgO. The films on LaAlO3, on the other hand, are epitaxial only at deposition temperatures of 600°C and above, and contain four variants with an orientation relationship given by (200)RuO2//(100)LaAlO3 and [011] RuO2//[011] LaAlO3. The observed microstructures of epitaxially grown films can be explained based on geometric considerations for the films and substrates.


1992 ◽  
Vol 275 ◽  
Author(s):  
D. L. Schulzi ◽  
B. Hano ◽  
D. Neumayer ◽  
B. J. Hinds ◽  
T. J. Markst ◽  
...  

ABSTRACTThe synthesis of superconducting Tl-Ba-Ca-Cu-O thin films on metal foils (Au and Ag) by metal-organic chemical vapor deposition (MOCVD) has been investigated. Ba-Ca-Cu-O-(F) films are first prepared via MOCVD using fluorinated “second generation” metal-organic precursors. After an intermediate anneal with water vapor-saturated oxygen to promote removal of F, Tl is introduced by annealing in the presence of a mixture of oxides (Tl2O3, BaO, CaO, CuO) of a specific composition. Characterization of the thin films by scanning electron microscopy, EDX, x-ray diffraction, and variable temperature magnetization measurements has been carried out. High temperature superconductor (HTS) films of Tl2Ba2Ca1Cu2O8−x on Au foil exhibit a magnetically derived Tc = 80K and a high degree of texturing with the crystallite c-axes oriented perpendicular to the substrate surface as evidenced by enhanced (000 x-ray diffraction reflections. Thin film coverage on Ag foil becomes non-contiguous during the (Tl2O3, BaO, CaO, CuO) mixture anneal.


Sign in / Sign up

Export Citation Format

Share Document