Near-Field Second Harmonic Microscopy of Thin Ferroelectric Films

1999 ◽  
Vol 596 ◽  
Author(s):  
I. I. Smolyaninov ◽  
H. Y. Liang ◽  
C. H. Lee ◽  
C. C. Davis ◽  
L. D. Rotter ◽  
...  

AbstractNear-field second harmonic microscopy is ideally suited for studies of local nonlinearity and poling of ferroelectric materials at the microscopic level. Its main advantages in comparison with other scanning probe techniques are the possibility of fast time-resolved measurements, and substantially smaller perturbation of the sample under investigation caused by the optical probe. We report second harmonic imaging of the surface of thin BaTiO3 films obtained in a near-field microscopy setup using a Ti:sapphire laser system consisting of an oscillator and a regenerative amplifier operating at 810 nm. Optical resolution on the order of 80 nm has been achieved.

Nanophotonics ◽  
2014 ◽  
Vol 3 (1-2) ◽  
pp. 117-124 ◽  
Author(s):  
Shirly Berezin ◽  
Basanth S. Kalanoor ◽  
Hesham Taha ◽  
Yuval Garini ◽  
Yaakov R. Tischler

AbstractIn this paper, we demonstrate simultaneous AFM/NSOM using a dual-tip normal tuning-fork based scanning probe microscope. By scanning two SPM probes simultaneously, one dedicated for AFM with a standard tip diameter of 20 nm, and the second having a 150 nm aperture NSOM fiber with 200 nm thick gold coating, we combine the benefits of ∼20 nm spatial resolution from the AFM tip with the spectral information of a near-field optical probe. The combination of simultaneous dual-tip scanning enables us to decouple the requirements for high resolution topography and probe functionality. Our method represents a marked shift from previous applications of multi-probe SPM where essentially a pump-probe methodology is implemented in which one tip scans the area around the second. As a model system, we apply dual-tip AFM/NSOM scanning to a sample of spin-cast nano-clustered Lumogen dyes, which show remarkable brightness and photochemical stability. We observe morphology features with a resolution of 20 nm, and a near-field optical resolution of 150 nm, validating our approach.


2005 ◽  
Vol 59 (4) ◽  
pp. 467-473 ◽  
Author(s):  
Michael Towrie ◽  
Anders Gabrielsson ◽  
Pavel Matousek ◽  
Anthony W. Parker ◽  
Ana Maria Blanco Rodriguez ◽  
...  

We describe an apparatus that provides, for the first time, a seamless bridge between femtosecond and microsecond time-resolved Raman and infrared vibrational spectroscopy. The laser system comprises an actively Q-switched sub-nanosecond pulsed kilohertz laser electronically synchronized to an ultrafast titanium sapphire regenerative amplifier to within 0.2 ns. The ultrafast amplifier provides the stable probe light source enabling high-sensitivity infrared vibrational spectroscopy of transients. Time-resolved infrared spectra of the excited-state relaxation dynamics of metal carbonyl compounds are presented to illustrate the capability of the apparatus, and transient data is resolved from 1 picosecond to over 100 microseconds. The results are compared to conventional nanosecond Fourier transform infrared (FT-IR) and laser based flash photolysis time-resolved infrared technology.


Author(s):  
Anant Chimmalgi ◽  
Taeyoul Choi ◽  
Costas P. Grigoropoulos

Nanostructures, which have characteristic dimensions that are difficult to achieve by conventional optical lithography techniques, are finding ever-increasing applications in a variety of fields. High resolution, reliability and throughput fabrication of these nanostructures is essential if applications incorporating nanodevices are to gain widespread acceptance. Owing to the minimal thermal and mechanical damage, ultra-short pulsed laser radiation has been shown to be effective for precision material processing and surface micro-modification. In this work, nanostructuring based on local field enhancement in the near field of a Scanning Probe Microscope (SPM) probe tip irradiated with femtosecond laser pulses has been studied. High spatial resolution (~10–12nm), flexibility in the choice of the substrate material and possibility of massive integration of the tips make this method highly attractive for nanomodification. We report results of nanostructuring of gold thin film utilizing an 800nm femtosecond laser system in conjunction with a commercial SPM in ambient air. Further, Finite Difference Time Domain (FDTD) simulation results for the spatial distribution of the laser field intensity beneath the tip are presented. Potential applications of this method include nanolithography, nanodeposition, high-density data storage, as well as various biotechnology related applications.


1997 ◽  
Vol 22 (21) ◽  
pp. 1592 ◽  
Author(s):  
Igor I. Smolyaninov ◽  
Anatoly V. Zayats ◽  
Christopher C. Davis

Author(s):  
M. Isaacson

It has only been within the last half decade that the concept of super resolution microscopy in the near-field has been vigorously pursued and experimentally demonstrated. However, the idea of optical resolution unhindered by far field diffraction limitations was conceived more than a half century ago by Synge and further elaborated by O'Keefe in the fifties. That die method was possible, however, was only first demonstrated using 3cm wavelength microwaves almost 20 years later.The basic principles of the method of near field scanning optical microscopy (NSOM) have been described before in the literature. Briefly, the idea is as follows: if an optical probe (source or detector) of diameter D is positioned within a distance of approximately D/π from the surface of an object, and the reflected, transmitted or emitted light is detected, then the lateral spatial region from which the information occurs is limited to aregion of approximate size D and not by the wavelength of the illuminated or detected light.


1985 ◽  
Vol 51 ◽  
Author(s):  
N. Bloembergen

ABSTRACTThe primary interaction is the absorption of photons by electrons. In metals free-free transitions increase the energy of the electron gas. In semiconductors and insulators electron-hole pairs are created, if the photon energy exceeds the band gap. If it is less, only multiphoton processes can initiate energy transfer from the light beam. In nearly all solid materials Auger processes and electron-phonon interactions occur on a picosecond time scale for the high density and energy of the carrier gas created by intense short laser pulses. Thus melting and evaporation of the material can occur on this time scale. These processes may be considered as the initial phases in the creation of laser produced plasmas. They have been studied by time-resolved measurements of the complex index of refraction, by electron and ion emission, by second harmonic generation, by electrical conductivity and other techniques. Fast time resolution is essential. The dynamic behavior of atoms and phase transitions in the picosecond and femtosecond regime has been opened up for experimental investigation.


Nano Letters ◽  
2021 ◽  
Author(s):  
Chi Zhang ◽  
Jason M. Bartell ◽  
Jonathan C. Karsch ◽  
Isaiah Gray ◽  
Gregory D. Fuchs
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document