Dilute Aqueous Dispersions of Zro2 And Al2O3

1985 ◽  
Vol 60 ◽  
Author(s):  
Evelyn M. De Liso ◽  
W. Roger Cannon ◽  
A. Srinivasa Rao

AbstractColloidal interactions in a heteroparticulate mixture of zirconia and alumina in water were studied for use in a transformation toughened alumina composite. The microelectrophoresis technique was used to measure the mobility of three zirconia powders and an alumina powder. The electro-phoretic mobility and particle size data were used to calculate total potential energy curves. The maximum height of the total potential energy barrier was used to predict the stability of a zirconia/alumina mixture. Theoretical predictions were compared to experimental results obtained from sedimentation and rheology measurements carried out as a function of pH of the dispersion. For a 5 v/o aqueous zirconia/alumina system stable dispersions were made at pH 3 and pH 5.

2016 ◽  
Vol 837 ◽  
pp. 52-57
Author(s):  
Martin Psotny

The stability analysis of an imperfect slender web subjected to the shearing load is presented, a specialized code based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. The peculiarities of the effects of the initial imperfections are investigated. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.


Author(s):  
Martin Psotný

Abstract The stability analysis of an imperfect plate subjected to the shear load is presented. To solve this problem, a specialized computer program based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.


1978 ◽  
Vol 79 ◽  
pp. 98-100
Author(s):  
L. M. Ozernoy ◽  
M. Reinhardt

Subclustering might help to solve the virial theorem paradox for systems of galaxies by hiding a major part of the potential energy in gravitationally bound subsystems. We have shown (Ozernoy and Reinhardt 1976, Astr. Astrophys., 52, 31) that even in groups of galaxies there is mass segregation, in the sense that bright group members tend to be concentrated towards the centre. Recently Wesson and Lermann (1977, Astrophys. Sp. Sci., 46, 327), realizing the importance of subclustering, proposed a quantitative method for estimating its effect on the stability of systems of galaxies. However, their assumption about the frequency of subsystems of multiplicity n is not in accord with Holmberg's (1962) result. the mean frequency of galaxies in pairs is 0.37 for the Turner and Gott groups (1976) and 0.23 for the de Vauceulours groups (1976), in good agreement with the value of 0.25 required by Holmberg's distribution. Assuming Holmberg's frequency of gravitationally bound subsystems and that they are homogeneously distributed throughout the system, we have for the ratio of the total potential energy of a system of N equal masses Ω to the potential energy calculated in the usual way neglecting subclustering Ωs, Ω/Ωs≈ 1+(Rc)/(<r2>N), if the velocity dispersion <σr2(n)> = constant. Here Rc is the effective radius of the system and <r2> the mean distance of binaries. the assumption σr2(n) = const is reasonable for n ≤ 7, when Holmberg's distribution holds, since σr2(2) = 203 km s−1 according to Karachentsev (1974), and increases to only ≃ 1000 km s−1 for rich clusters. Since Karachentsev's data give an <r2> = 33 kpc for HO = 55 km s−1 Mpc−1, we have Ω/Ωs≈ 4 for groups of galaxies with Rc≈ 1 Mpc and N = 10. Thus it seems that subclustering cannot remove the mass discrepancy for rich clusters and for groups only in moderate cases.


Author(s):  
Carmel Majidi ◽  
George G. Adams

The solution of adhesion problems with elastic plates generally involves solving a boundary-value problem with an assumed contact area. The contact region is then found by minimizing the total potential energy with respect to the contact area (i.e. the contact radius for the axisymmetric case). Such a procedure can be extremely long and tedious. Here, we show that the inclusion of adhesion is equivalent to specifying a discontinuous internal bending moment at the contact region boundary. The magnitude of this moment discontinuity is related to the work of adhesion and flexural rigidity of the plate. Such a formulation can greatly reduce the algebraic complexity of solving these problems. It is noted that the related plate contact problems without adhesion can also be solved by minimizing the total potential energy. However, it has long been recognized that it is mathematically more efficient to find the contact area by specifying a continuous internal bending moment at the boundary of the contact region. Thus, our moment discontinuity method can be considered to be a generalization of that procedure which is applicable for problems with adhesion.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

Abstract This paper discusses a novel optimization method to design statically balanced manipulators. Only springs are used to balance the manipulators composed of revolute (R) joints. Since the total potential energy of the system is constant when statically balanced, the sum of squared differences between the two potential energy when giving different random values of joint variables is set as the objective function. Then the optimization tool of MATLAB is used to obtain the spring attachment points. The results show that for a 1-link manipulator mounted on an R joint, in addition to attaching the spring right above the R joint, the attachment point can have offset. It also indicates that an arbitrary spatial manipulator with n link, whose weight cannot be neglected, can be balanced using n springs. Using this method, the static balancing can be readily achieved, with multiple solutions.


Author(s):  
Antonio Carminelli ◽  
Giuseppe Catania

This paper deals with an adaptive refinement technique of a B-spline degenerate shell finite element model, for the free vibration analysis of curved thin and moderately thick-walled structures. The automatic refinement of the solution is based on an error functional related to the density of the total potential energy. The model refinement is generated by locally increasing, in a sub-domain R of a local patch domain, the number of shape functions while maintaining constant the functions polynomial order. The local refinement strategy is described in a companion paper, written by the same authors of this paper and presented in this Conference. A two-step iterative procedure is proposed. In the first step, one or more sub domains to be refined are identified by means of a point-wise error functional based on the system total potential energy local density. In the second step, the number of shape functions to be added is iteratively increased until the difference of the total potential energy, calculated on the sub domain between two iteration, is below a user defined tolerance. A numerical example is presented in order to test the proposed approach. Strengths and limits of the approach are critically discussed.


2019 ◽  
Vol 807 ◽  
pp. 135-140
Author(s):  
Xi Jin Fu

Based on the first-principles, using CCSD(T) ab initio calculation method, many-body potential energy of solid argon are accurately calculated with the atomic distance R from 2.0Å to 3.6Å at T=300K, and firstly establish and discuss the face-centered cubic (fcc) atomic crystal configurations of two-, three-, and four-body terms by geometry optimization. The results shows that the total number of (Ar)2 clusters is 903, which belongs to 12 different geometric configurations, the total number of (Ar)3 clusters is 861, which belongs to 25 different geometric configurations, and the total number of (Ar)4 clusters of is 816 which belongs to 27 different geometric configurations. We find that the CCSD(T) with the aug-cc-pVQZ basis set is most accurate and practical by comprehensive consideration. The total potential energy Un reachs saturation at R>2.0Å when the only two-and three-body interaction energy are considered. When R≤2.0Å, the total potential energy Un must consider four-and higher-body interaction energy to achieve saturation. Many-body expansion potential of fcc solid argon is an exchange convergent series.


Author(s):  
W D van Dorsser ◽  
R Barents ◽  
B M Wisse ◽  
M Schenk ◽  
J L Herder

Static balancing is a useful concept to reduce the operating effort of mechanisms. Spring mechanisms are used to achieve a constant total potential energy, thus eliminating any preferred position. Quasi-statically, the mechanism, once statically balanced, can be moved virtually without the operating energy. In some cases, it is desirable to adjust the characteristic of the balancer, for instance, due to a change in the payload in a gravity balanced mechanism. The adjustment of current static balancers requires significant operating energy. This paper will present a novel variant to adjust the spring- and linkage-based static balancers without the need for external energy. The variant makes use of the possibility to adjust the spring stiffness in an energy-conserving way by adjusting the number of active coils. The conditions under which it functions properly will be given, and a proof of the concept model will be shown.


1975 ◽  
Vol 53 (8) ◽  
pp. 1224-1236 ◽  
Author(s):  
Claude Guimon ◽  
Daniel Liotard ◽  
Geneviève Pfister-Guillouzo

The conformations of thietane, thietane sulfoxide, and their 3-chloro derivatives were obtained theoretically by minimization of the energy with respect to geometric parameters using the semi-empirical CNDO/2 method extended to the third period. The results agree well with known experimental data. The respective stabilities of the different conformers are explained by partial energy results obtained by a bicentric partition of the total potential energy of the molecules. [Journal translation]


Sign in / Sign up

Export Citation Format

Share Document