Adaptive Composites with Embedded Shape Memory Alloy Wires

1999 ◽  
Vol 604 ◽  
Author(s):  
J.A. Balta ◽  
M. Parlinska ◽  
V. Michaud ◽  
R. Gotthardt ◽  
J-A.E. Manson

AbstractPre-strained martensitic Shape Memory Alloy wires embeddedz into a composite material act against the stiffness of the host material if they are heated above their retransformation temperature, biasing their strain recovery. As a result, recovery stresses are generated in the composite, leading to a shift in resonance vibration frequency if the wires are placed along the neutral axis of a composite beam. Guidelines for quantification of the effects produced, as a function of SMA wire composition, volume fraction, level of pre-strain, and of host material stiffness are not available yet. In order to investigate the governing mechanisms of activation, adaptive composite materials based on Kevlar fiber reinforced epoxy matrices have been produced by embedding thin Shape Memory Alloy wires, 150 microns in diameter, during processing in an autoclave. A mold was specially designed to pre-strain the SMA wires and prevent their recovery during the cure cycle. Values of the degree of activation in the composite materials, in terms of maximal recovery force and of the corresponding maximal resonance vibration frequency shift will be presented as a function of the stiffness of the host material and SMA volume fraction. Preliminary guidelines for the optimization of these materials will thus be given.

2021 ◽  
Vol 125 (1287) ◽  
pp. 830-846
Author(s):  
W. Zhang ◽  
X.T. Nie ◽  
X.Y. Gao ◽  
W.H. Chen

ABSTRACTActive flow control for aerofoils has been proven to be an effective way to improve the aerodynamic performance of aircraft. A conceptual hybrid design with surfaces embedded with Shape-Memory Alloy (SMA) and trailing Macro Fibre Composites (MFC) is proposed to implement active flow control for aerofoils. A Computational Fluid Dynamics (CFD) model has been built to explore the feasibility and potential performance of the proposed conceptual hybrid design. Accordingly, numerical analysis is carried out to investigate the unsteady flow characteristics by dynamic morphing rather than using classical static simulations and complicated coupling. The results show that camber growth by SMA action could cause an evident rise of Cl and Cd in the take-off/landing phases when the Angle-of-Attack (AoA) is less than 10°. The transient tail vibration behaviour in the cruise period when using MFC actuators is studied over wide ranges of frequency, AoA and vibration amplitude. The buffet frequency is locked in by the vibration frequency, and a decrease of 1.66–2.32% in Cd can be achieved by using a proper vibration frequency and amplitude.


Author(s):  
Niloufar Bagheri ◽  
Mahmood M Shokrieh ◽  
Ali Saeedi

The effect of NiTi alloy long wires on the viscoelastic behavior of epoxy resin was investigated by utilizing the dynamic mechanical analysis (DMA) and a novel micromechanical model. The present model is capable of predicting the viscoelastic properties of the shape-memory-alloy (SMA) reinforced polymer as a function of the SMA volume fraction, initial martensite volume fraction, pre-strain level in wires, and the temperature variations. The model was verified by conducting experiments. Good agreement between the theoretical and experimental results was achieved. A parametric study was also performed to investigate the effect of SMA parameters. According to the results, by the addition of a small volume fraction of SMA, the storage modulus of the composite increases significantly, especially at higher temperatures. Moreover, applying a 4% pre-strain caused a 10% increase in the maximum value of the loss factor of the SMA reinforced epoxy in comparison with the 0% pre-strained SMA reinforced epoxy.


2014 ◽  
Vol 6 ◽  
pp. 632825 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Rizal Zahari ◽  
Amran Ayob

Shape memory alloy (SMA) wires were embedded within laminated composite plates to take advantage of the shape memory effect property of the SMA in improving post-buckling behavior of composite plates. A nonlinear finite element formulation was developed for this study. The plate-bending formulation used in this study was developed based on the first order shear deformation theory, where the von Karman's nonlinear moderate strain terms were added to the strain equations. The effect of the SMA was captured by adding recovery stress term in the constitutive equation of the SMA composite plates. Values of the recovery stress of the SMA were determined using Brinson's model. Using the principle of virtual work and the total Lagrangian approach, the final finite element nonlinear governing equation for the post-buckling of SMA composite plates was derived. Buckling and post-buckling analyses were then conducted on the symmetric angle-ply and cross-ply SMA composite plates. The effect of several parameters such as the activation temperature, volume fraction, and the initial strain of the SMA on the post-buckling behavior of the SMA composite plates were studied. It was found that significant improvements in the post-buckling behavior for composite plates can be attained.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 730
Author(s):  
Xiangjun Jiang ◽  
Yongkun Wang ◽  
Fengqun Pan ◽  
Ze Jing ◽  
Jin Huang ◽  
...  

A phenomenological constitutive model is developed to describe the uniaxial transformation ratcheting behaviors of the superelastic shape memory alloy (SMA) by employing a cosine–type phase transformation equation with the initial martensite evolution coefficient that can capture the feature of the predictive residual martensite accumulation evolution and the nonlinear hysteresis loop on a finite element (FE) analysis framework. The effect of the applied loading level on transformation ratcheting is considered in the proposed model. The evolutions of transformation ratcheting and transformation stresses are constructed as the function of the accumulated residual martensite volume fraction. The FE implementation of the proposed model is carried out for the numerical analysis of transformation ratcheting of the SMA bar element. The integration algorithm and the expression of consistent tangent modulus are deduced in a new form for the forward and reverse transformation. The numerical results are compared with those of existing models; experimental results show the validity of the proposed model and its FE implementation in transformation ratcheting. Finally, a FE modeling is established for a repeated preload analysis of SMA bolted joint.


2008 ◽  
Vol 59 ◽  
pp. 129-134
Author(s):  
Yuji Takeda ◽  
Takaei Yamamoto ◽  
M. Uegaki ◽  
Hiroki Cho ◽  
Toshio Sakuma ◽  
...  

This paper describes the transformation and deformation behavior and its constitutive equation for Ti-41.7Ni-8.5Cu (at%) shape memory alloy. Plastic deformation after pre-deformation is investigated using the volume fraction of slip-deformed martensite. New kinetics and constitutive equations are proposed for the reverse transformation process. The material constants in the proposed equationa are determined from the results of tensile and heating/cooling tests of Ti-41.7Ni-8.5Cu (at%) shape memory alloy. The calculated results describe well the deformation and transformation behavior affected by pre-strain.


1996 ◽  
Vol 459 ◽  
Author(s):  
J.-E. Bidaux ◽  
J.-A. E. Månson ◽  
R. Gotthardt

ABSTRACTThe use of shape-memory-alloy (SMA) fibres to actively changethe stiffness of a composite beam is investigated on a model system composed of an epoxy matrix with a series of embedded pre-strained NiTi fibres. Stiffness changes are detected through shifts in the natural vibration frequency of the beam. When electrically heated, the pre-strained NiTi fibres undergo a phase transformation. Since the shape recovery associated with the transformation is restrained by the constraints of both the matrix and the clamping device, a force is generated. This force leads to an increase in the natural vibration frequency of the composite beam. Depending on the degree of fibre pre-strain, either ordinary martensite, R-phase or a mixture of the two can be stress-induced. It is found that the R-phase gives rise to the largest change in vibration frequency for a given temperature increase and the most reversible behaviour. Its low transformation strain is also more favourable for fibre-matrix adhesion. The effect of stress relaxation in the polymer matrix on the composite response is discussed.


Sign in / Sign up

Export Citation Format

Share Document