Work Function Study of Polycrystalline Metals using a UHV Scanning Kelvin Probe

2000 ◽  
Vol 615 ◽  
Author(s):  
U. Petermann ◽  
I.D. Baikie ◽  
B. Lägel ◽  
K.M. Dirscherl

ABSTRACTWe have undertaken a study of high work function (φ) surfaces as part of an ongoing project searching for efficient target materials for use in Hyperthermal Surface Ionisation (HSI), a new mass spectroscopy ionisation technique. HSI relies on high work function surfaces for the production of positive ions. Polycrystalline metals as Re, W, Mo and Pt are particularly interesting materials in this respect as oxidation substantially increases their φ. We present and discuss the following experimental evidence: a) the magnitude and sign of φ changes in terms of adsorbate induced dipoles, b) the effect of molecular hydrogen exposure on the clean surface, and c) the effect of subsequent oxygen exposure.Using a novel UHV Scanning Kelvin Probe we have followed the oxidation kinetics of polycrystalline metals at different temperatures and examined the effects of oxidation, flash annealing and sputter-anneal cleaning cycles via high-resolution φ topographies. Our results indicate in particular Re as a suitable HSI target material exhibiting a φ increase of 1050 meV at 300 K increasing to 2050 meV at 900 K. Sputter-cleaned surfaces exhibit a dramatic change in the second oxidation phase.We have also examined φ changes associated with N2O and CO2 on Tungsten and Molybdenum. We observe that atomic oxygen gives similar results to O2 but has a much lower initial sticking coefficient. We report that CO2 actually lowers the φ for substrate temperatures under 650 K, the peak work function changes occurs at 850 K and is approximately 1/3 the height of the O2 or O peak.

2000 ◽  
Vol 623 ◽  
Author(s):  
U. Petermann ◽  
I.D. Baikie ◽  
B. Lägel ◽  
K.M. Dirscherl

AbstractIn order to search for efficient target materials for use in Hyperthermal Surface lonisation (HSI), a new mass spectroscopy ionisation technique, we have performed a study of high and low work function (ø) surfaces as part of an ongoing project. HSI relies on high and low work function surfaces for the production of positive (pHSI) and negative (nHSI) ions, respectively.Using a novel UHV Scanning Kelvin Probe we have followed the oxidation kinetics of polycrystalline Re at different temperatures and examined the effects of oxidation, flash annealing and sputter-anneal cleaning cycles via high resolution work function topographies. Our results indicate that oxidised Re is the best candidate for pHSI in terms of ionisation efficiency and ø change. The peak work function change of 2.05 eV occurred at 900 K to 950K.For the nHSI materials Calcium exhibited the best performance with respect to the ionisation efficiency indicating a wf of 2.9 eV. We will present data in terms of mass fragmentation using an HSI-Time-of-Flight (TOF) system and time stability of the work function.


2010 ◽  
Vol 96 (15) ◽  
pp. 153504 ◽  
Author(s):  
D. J. D. Moet ◽  
P. de Bruyn ◽  
P. W. M. Blom

2010 ◽  
Vol 54 (10) ◽  
pp. 1160-1165 ◽  
Author(s):  
Chung-Hao Fu ◽  
Kuei-Shu Chang-Liao ◽  
Hsueh-Yueh Lu ◽  
Chen-Chien Li ◽  
Tien-Ko Wang

Sign in / Sign up

Export Citation Format

Share Document