Formation of Self-Assembled Nanometer-Scale InP Islands on Silicon Substrates

2000 ◽  
Vol 618 ◽  
Author(s):  
A.S. Bakin ◽  
D. Piester ◽  
H.-H. Wehmann ◽  
A.A. Ivanov ◽  
A. Schlachetzki ◽  
...  

ABSTRACTThree-dimensional islands of InP have been reproducibly grown in the Stranski-Krastanow growth mode on Si (001) and (111) by using metal-organic vapor phase epitaxy in order to obtain nanometer-scale quantum dots. Atomic-force microscopy was used to determine the morphology of the samples and to evaluate the dimensions of the islands. Formation of three-dimensional islands with densities as high as 2.5×1010 cm−2 and small sizes have been observed. The evolution of island morphology is explained in terms of strain-relaxing mechanisms at the first stages of InP/Si heteroepitaxy.

Author(s):  
Hua-Chiang Wen ◽  
Ming-Chu Hsieh ◽  
Yu-Pin Lan ◽  
Wu-Ching Chou

Abstract The nanotribological properties of Zn0.75Mg0.25O grown on R-plane sapphire using metal-organic vapor-phase epitaxy at different substrate temperatures (RT, 600, 700 and 800 °C) were investigated. A slight sliding track was observed at ramped loads of 250 μN, and an obvious bulge edge surrounding the groove was observed at ramped loads of 1 000 μN. Because of the annealing treatment, all the Zn0.75Mg0.25O coatings showed a reconstruction phenomenon of crystallites. The volumes of the bulge edges were as high as 30% in the annealed specimens and were larger than the volumes of the RT-treated specimens when ramped loads of 1 000 μN were applied. Under frictional loading, atomic force microscopy examination of scratch-tested films indicated lower bonding forces on R-plane sapphire than M-plane sapphire.


1999 ◽  
Vol 583 ◽  
Author(s):  
M. C. Hanna ◽  
A. Mascarenhas ◽  
Hyeonsik M. Cheong

AbstractWe have used atomic force microscopy (AFM) and Raman spectroscopy to investigate the development of the surface morphology of (001) direct and vicinal GaInP and GaInAs grown under conditions to produce strong CUPtB ordering. Raman spectroscopy provided direct evidence of CuPtB ordering in layers as thin as 10 nm for GaInP and 5 nm for GaInAs. We find that the morphology of GaInP and GaInAs on (001)6B substrates consists of ridges, which are aligned predominately along the [110] direction (A-direction). These ridges are well developed even at layer thicknesses of 2 nm, and their sides consist of step-bunches and near (001) terraces. On (001) direct substrates, the GaInP morphology is similar to that obtained on 6B substrates, although the step bunches have no preferential orientation, while GaInAs (001) growth proceeds by a combination of 2D-island and step flow growth. We discuss possible reasons for the differences in the morphology of ordered GaInP and GaInAs. The results of this work suggest it may be difficult to produce abrupt heterointerfaces in structures containing ordered GalnP and GaInAs alloys.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Reina Miyagawa ◽  
Jiejun Wu ◽  
Hideto Miyake ◽  
Kazumasa Hiramatsu

Abstractc-plane (0001) AlN layers were grown on sapphire (11-20) and (0001) substrates by hydride vapor phase epitaxy (HVPE) and metal-organic vapor phase epitaxy (MOVPE), respectively. The growth temperatures were adjusted from 1430-1500 °C and the reactor pressure was kept constant at 30 Torr. Mirror and flat c-plane AlN were obtained grown on both a-plane and c-plane sapphire. Crystalline quality and surface roughness are improved with increasing growth temperature, detected by high resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM). The Full widths at half maximum (FWHM) values of (10-12) diffraction are 519 and 1219 arcsec for c-plane AlN grown on a-plane sapphire and c-plane sapphire, respectively. It indicates that a-plane sapphire substrate benefits to decrease dislocations density.


2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2021 ◽  
Vol 129 (3) ◽  
pp. 030901
Author(s):  
Hossein J. Sharahi ◽  
Mohsen Janmaleki ◽  
Laurene Tetard ◽  
Seonghwan Kim ◽  
Hamed Sadeghian ◽  
...  

1997 ◽  
Vol 482 ◽  
Author(s):  
H. Hirayama ◽  
S. Tanaka ◽  
P. Ramvall ◽  
Y. Aoyagi

AbstractWe demonstrate photoluminescence from self- assembling InGaN quantum dots (QDs), which are artificially fabricated on AlGaN surfaces via metal- organic chemical vapor deposition. InGaN QDs are successfully fabricated by the growth mode transition from step- flow to three dimensional island formation by using anti-surfactant silicon on AlGaN surface. The diameter and height of the fabricated InGaN QDs are estimated to be ˜10nm and ˜5nm, respectively, by an atomic- force- microscope (AFM). Indium mole fraction of InxGal−x N QDs is controlled from x=˜0.22 to ˜0.52 by varying the growth temperature of QDs. Intense photoluminescence is observed even at room temperature from InGaN QDs embedded with the GaN capping layers. In addition, the temperature- dependent energy shift of the photoluminescence peak- energy shows a localization behavior.


2020 ◽  
Author(s):  
Pavel Alekseevskiy ◽  
Andrei N. Yankin ◽  
Marina O. Barsukova ◽  
Valentin A. Milichko

2014 ◽  
Vol 64 (6) ◽  
pp. 923-928 ◽  
Author(s):  
D. Takeuchi ◽  
K. Makihara ◽  
A. Ohta ◽  
M. Ikeda ◽  
S. Miyazaki

Sign in / Sign up

Export Citation Format

Share Document