Nonlinear Optical Responses of Spin-Coated Vanadium Oxide Films

2000 ◽  
Vol 637 ◽  
Author(s):  
Masanori Ando ◽  
Kohei Kadono ◽  
Kenji Kamada ◽  
Koji Ohta ◽  
Jean-François Delouis ◽  
...  

AbstractWe report on the third-order nonlinear optical responses of V2O5 films prepared by pyrolysis of spin-coated films of vanadium 2-ethylhexanoate. Temporal behavior of third-order optical nonlinearity of the spin-coated V2O5 films was examined at a wavelength of 532 nm by the degenerate four-wave mixing (DFWM) technique using a mode locked Nd/YAG laser (35 ps fwhm). Fast relaxation with a lifetime of 25 ps and slow relaxation with a lifetime of 150 ps were observed. The nonlinear transmission experiment on the spin-coated V2O5 films using the same laser source showed that the transmittance decreased with increasing intensity of the incident light. The intensity-dependent absorption coefficients (β) were roughly estimated to be 3.5×10−5 cm/W. Transient absorption properties of the V2O5 film were measured by use of the second and third harmonics of a Q switched Nd/YAG laser (10 ns fwhm). The results observed for the nonlinear transmission and the transient absorption suggest that induced absorption would contribute to the third-order optical nonlinearity of the V2O5 films with fast response times, and also suggest that the V2O5 films have potentiality for use as optical power limiting materials.

1999 ◽  
Vol 14 (2) ◽  
pp. 330-333 ◽  
Author(s):  
Zhong Hua Zhou ◽  
Hiroyuki Nasu ◽  
Tadanori Hashimoto ◽  
Kanichi Kamiya

The third-order optical nonlinearity of glasses of the Na2S–PbS–GeS2 and Na2S–PbO–GeS2 systems was measured by third-harmonic generation method. The third-order nonlinearities of glasses of both systems increase with the increasing lead content. The maximum value of the third-order optical nonlinearity was 3.00 × 10-12 esu. The addition of PbO basically has little influence on third-order optical nonlinearity, and the largest nonlinearity is 1.49 × 10-12 esu. The minimum appearing at 15 mol% PbO can be explained by the decrease of number density of lead and sulfur. Chemical durability of oxysulfide glasses is superior to that of a pure sulfide system; thus the addition of PbO is important in this sense.


1999 ◽  
Vol 54 (5) ◽  
pp. 348-350
Author(s):  
Rui Hua Xie

The third-order optical nonlinearity of a nitrogen doped car-bon nanotube is studied. It is found that carbon nitride nano-tubes are potentially important in photonics owing to their large nonlinear optical response.


1992 ◽  
Vol 247 ◽  
Author(s):  
James S. Shirk ◽  
J. R. Undle ◽  
Steven R. Flom ◽  
F. J. Bartoli ◽  
Arthur W. Snow

ABSTRACTThis paper discusses the third-order nonlinear optical (NLO) properties of substituted phthalocyanines measured by time-resolved degenerate four-wave mixing at 1064 nm. The study explores optical pumping as a mechanism contributing to a large third-order optical nonlinearity in one member of this interesting class of NLO materials, PbPc(CP)4.


2006 ◽  
Vol 20 (11) ◽  
pp. 623-632 ◽  
Author(s):  
QUSAY MOHAMMED ALI ◽  
P. K. PALANISAMY

The single beam Z-scan technique was used to determine the nonlinear optical properties of the organic dye Nile Blue chloride in the solvent ethanol. The experiments were performed with a He-Ne laser with a wavelength of 632.8 nm. The negative nonlinear refractive index and two-photon absorption coefficient were observed in this dye. The intensity-dependent nonlinear refractive index was investigated. The result shows that the dye exhibits a great nonlinear response with the real and imaginary parts of the third-order nonlinear optical susceptibility χ(3) being -4.12×10-5 esu and 1.35×10-6 esu, respectively. These results show that the Nile Blue chloride dye has potential applications in nonlinear optics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takashi Takeuchi ◽  
Kazuhiro Yabana

AbstractIn this study, a third-order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps were investigated using time-dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third-order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano-objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third-order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third-order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third-order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third-order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.


1992 ◽  
Vol 247 ◽  
Author(s):  
Ashwini K. Agrawal ◽  
Samson A. Jenekhe ◽  
Herman Vanherzeele ◽  
Jeffrey S. Meth

ABSTRACTThe third-order nonlinear optical properties of thin films of two series of conjugated rigid-rod polyquinolines, exemplified by poly(2, 2'-(l, 4-phenylene)-6, 6'-bis(4-phenyl quinoline)) (PPPQ, 2d) and poly(2, 7-(l, 4-phenylene)-4, 9-diphenyl-l, 6-anthrazoline) (PPDA, 3d), were investigated by third harmonic generation spectroscopy. Of the nine polyquinolines with diverse backbone structures, PPPQ has the largest optical nonlinearity with a χ(3) (-3ω; ω, ω, ω) value of 3.2 × 10−12 esu and 3.3 × 10−11 esu in the off-resonant and three-photon resonant regions, respectively. A comparison of the nonresonant χ(3) of the series of nine systematically derived polyquinolines showed that a scaling law of the form χ(3) ∼ (λmax)v ∼ Eg-v does not hold; in fact, the nonresonant χ(3) was essentially independent of the optical bandgap. These results suggest that structure-χ(3) propeny relationships in polymers cannot be inferred from those of oligomers and model compounds.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3194
Author(s):  
Adrian Petris ◽  
Petronela Gheorghe ◽  
Tudor Braniste ◽  
Ion Tiginyanu

The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Zhihao Zhang ◽  
Pengchao Li ◽  
Yuzong Gu

It is significant to study the reason that semiconductor material has adjustable third-order optical nonlinearity through crystal form and dimensions are changed. αMnS nanoparticles with different crystal forms and sizes were successfully prepared by one-step hydrothermal synthesis method and their size-limited third-order nonlinear optical property was tested by Z-scan technique with 30 ps laser pulses at 532 nm wavelength. Nanoparticles of different crystal forms exhibited different NLO (nonlinear optical) responses. γMnS had stronger NLO response than αMnS because of higher fluorescence quantum yield. Two-photon absorption and the nonlinear refraction are enhanced as size of nanoparticlesreduced. The nanoparticles had maximum NLO susceptibility which was 3.09 × 10−12 esu. Susceptibility of αMnS increased about nine times than that of largest nanoparticles. However, it was reduced when size was further decreased. This trend was explained by the effects of light induced dipole moments. And defects in αMnS nanoparticles also had effect on this nonlinear process. MnS nanoparticles had potential application value in optical limiting and optical modulation.


Sign in / Sign up

Export Citation Format

Share Document