Synthesis of Continuous SmSi2 Layers on Si by Samarium Ion Implantation Using A Metal Vapor Vacuum Arc Ion Source

2000 ◽  
Vol 647 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractSamarium ion implantation was conducted to synthesize Sm-disilicide films on silicon wafers, using a metal vapor vacuum arc ion source and the continuous SmSi2 films were directly obtained with neither external heating during implantation nor post-annealing. Diffraction and surface morphology analysis confirmed the formed Sm-disilicilde films were of a fine crystalline structure under appropriate experimental conditions. Besides, the formation mechanism of the SmSi2phase is also discussed in terms of the temperature rise caused by ion beam heating and the effect of ion dose on the properties of the SmSi2films.

2000 ◽  
Vol 648 ◽  
Author(s):  
X.Q. Cheng ◽  
H.N. Zhu ◽  
B.X. Liu

AbstractFractal pattern evolution of NiSi2 grains on a Si surface was induced by high current pulsed Ni ion implantation into Si wafer using metal vapor vacuum arc ion source. The fractal dimension of the patterns was found to correlate with the temperature rise of the Si substrate caused by the implanting Ni ion beam. With increasing of the substrate temperature, the fractal dimensions were determined to increase from less than 1.64, to beyond the percolation threshold of 1.88, and eventually up to 2.0, corresponding to a uniform layer with fine NiSi2 grains. The growth kinetics of the observed surface fractals was also discussed in terms of a special launching mechanism of the pulsed Ni ion beam into the Si substrate.


2004 ◽  
Vol 11 (04n05) ◽  
pp. 363-366 ◽  
Author(s):  
JIANHUA YANG ◽  
TONGHE ZHANG

H13 steel samples were implanted with tungsten using a metal vapor vacuum arc (MEVVA) ion source, with an implantation dose of 1×1017 cm -2, an extraction acceleration of 30 kV and pulsed ion beam fluxes of between 0.3 mA·cm -2 and 6 mA·cm -2. The surface mechanical properties and microstructure for the W-implanted samples was characterized by the Rutherford backscattering spectroscope (RBS) and a high voltage electron microscope (HVEM). Experimental results of wear and hardness indicated that the hardness and wear of H13 steel increased when the voids were produced by tungsten ion implantation with a high pulsed current density. Forming causes for voids and their influence on the tungsten concentration depth profile in the implanted H13 steel and the surface mechanical properties were discussed in terms of spike theory.


2002 ◽  
Vol 730 ◽  
Author(s):  
Shuangbao Wang ◽  
Hong Liang ◽  
Peiran Zhu

Abstractβ-FeSi2 was firstly formed by implanting Si wafers with Fe ions at 50 kV to a dose of 5×1017/cm2in a strong current Metal Vapor Vacuum Arc (MEVVA) implanter. Secondly, Ti implantation was performed on these Fe as-implanted samples. The Fe + Ti implanted samples were furnace annealed in vacuum at temperatures ranging from 650 to 975°C. The XRD patterns of the annealed samples correspond to β-FeSi2 structure (namely β-Fe(Ti)Si2). When annealing was done above 1050°C, the β-Fe(Ti)Si2 transformed into α-Fe(Ti)Si2. This implies that introducing Ti stabilizes the β-FeSi2 phase. Resistance measurements were also performed.


1991 ◽  
Vol 235 ◽  
Author(s):  
Kin Man Yu ◽  
Ian G. Brown ◽  
Seongil Im

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.


1997 ◽  
Vol 481 ◽  
Author(s):  
Dihu Chen ◽  
S. P. Wong ◽  
L. C. Ho ◽  
H. Yan ◽  
R.W.M. Kwok

ABSTRACTBuried SiC layers were synthesized by carbon implantation into silicon with a metal vapor vacuum arc ion source under various implantation and annealing conditions. The infrared absorption spectra of these samples were deconvoluted into two or three gaussian components depending on the preparation conditions. One component peaked at around 700 cm-1was assigned to amorphous SiC (a-SiC). The other two components, both peaked at 795 cm-1 but with different values of full width at half maximum (FWHM), were attributed to β-SiC. The one with a larger (smaller) FWHM corresponds to β-SiC of smaller (larger) grains. With this deconvolution scheme, the fraction of various SiC phases in these samples were determined. It was found that for the as-implanted samples there are critical energies and doses at which the crystalline SiC fraction increases abruptly. This was attributed to the ion beam induced crystallization (IBIC) effect. It was also shown that the IBIC effect leads to strong dependence of the β-SiC fraction on the order of implantation for samples synthesized by double-energy implantation. Analysis of the evolution of the β-SiC fraction with annealing time indicated that the crystallization process in these SiC layers could well be described by the classical random nucleation and growth theory.


2000 ◽  
Vol 611 ◽  
Author(s):  
X. W. Zhang ◽  
S. P. Wong ◽  
W. Y. Cheung ◽  
F. Zhang

ABSTRACTNickel disilicide layers were prepared by nickel ion implantation into silicon substrates using a metal vapor vacuum arc ion source at various beam current densities to an ion dose of 6×1017 cm−2. Characterization of the as-implanted and annealed samples was performed using Rutherford backscattering spectrometry, x-ray diffraction, electrical resistivity and Hall effect measurements. The temperature dependence of the sheet resistivity and the Hall mobility from 30 to 400 K showed peculiar peak and valley features varying from sample to sample. A two-band model was proposed to explain the observed electrical transport properties.


2011 ◽  
Vol 415-417 ◽  
pp. 76-79
Author(s):  
Guo Jia Ma ◽  
Guo Qiang Lin ◽  
Hong Chen Wu

SiC coated carbon fiber-reinforced SiC matrix (C/SiC) composites were implanted with aluminum ions by metal vapor vacuum arc ion source to improve their oxidation resistance. Depth profile of the aluminum ions in the SiC coated C/SiC composites was checked by Auger electronic energy spectrum. Oxidation tests were performed in flowing dry air at 1300°C on the SiC coated C/SiC composites. The samples with ion implantation exhibited lower weight loss than those without aluminum ion implantation. The surface morphologies of the samples were obtained by scanning electronic microscope. As compared with the mechanical properties of the samples without ion implantation, those of ion-implanted samples changed little.


2021 ◽  
Vol 248 ◽  
pp. 04006
Author(s):  
Anatoly Borisov ◽  
Boris Krit ◽  
Igor Suminov ◽  
Mikhail Ovchinnikov ◽  
Sergey Tikhonov

The combined effect of ion and laser beams on physical and mechanical properties of metal and alloy surfaces has been studied. The technique of determining the main parameters of polyenergetic ion implantation using a vacuum-arc ion source is proposed and evaluated. It is found that treatment with titanium ions and the subsequent laser thermal hardening increase microhardness of steel 45 and U8 up to 6 times.


Sign in / Sign up

Export Citation Format

Share Document