Rock Wetting Condition Inferred from Dielectric Response

2000 ◽  
Vol 651 ◽  
Author(s):  
Yani Carolina Araujo ◽  
Mariela Araujo ◽  
Hernán Guzmán

AbstractWettability is a manifestation of rock-fluid interactions associated with fluid distribution in porous media. Conventional wettability evaluation is performed by a sequence of spontaneous and forced displacements of different fluids into a porous sample, a method which is costly and time consuming. A new attractive approach is to estimate this quantity from dielectric measurements, since they can be done rapidly and economically.The dielectric frequency response of several rock samples of known wettability condition was studied in the range from 10 Hz to 100 MHz. Samples were saturated with brine and oil. The results confirm the strong influence of wetting condition on dielectric response. Water wet samples have significantly higher values of and (real and imaginary parts of generalized complex permitivity) than oil wet samples. In particular, the high frequency behavior of is most affected. Different regimes are identified as a function of frequency. They correspond to zones where different polarization effects are manifested. We quantify this effect and find a correlation with the modified Amott wettability index. Based on these findings, we propose an experimental protocol for the indirect measurement of wettability at laboratory scale.

Langmuir ◽  
2010 ◽  
Vol 26 (3) ◽  
pp. 1656-1665 ◽  
Author(s):  
B. H. Bradshaw-Hajek ◽  
S. J. Miklavcic ◽  
L. R. White

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1397
Author(s):  
Bishwadeep Saha ◽  
Sebastien Fregonese ◽  
Anjan Chakravorty ◽  
Soumya Ranjan Panda ◽  
Thomas Zimmer

From the perspectives of characterized data, calibrated TCAD simulations and compact modeling, we present a deeper investigation of the very high frequency behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55-nm BiCMOS process technology from STMicroelectronics. The TCAD simulation platform is appropriately calibrated with the measurements in order to aid the extraction of a few selected high-frequency (HF) parameters of the state-of-the-art compact model HICUM, which are otherwise difficult to extract from traditionally prepared test-structures. Physics-based strategies of extracting the HF parameters are elaborately presented followed by a sensitivity study to see the effects of the variations of HF parameters on certain frequency-dependent characteristics until 500 GHz. Finally, the deployed HICUM model is evaluated against the measured s-parameters of the investigated SiGe HBT until 500 GHz.


2007 ◽  
Vol 60 (1) ◽  
pp. 6 ◽  
Author(s):  
Simon Schrödle ◽  
Gary Annat ◽  
Douglas R. MacFarlane ◽  
Maria Forsyth ◽  
Richard Buchner ◽  
...  

A study of the room-temperature ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide by dielectric relaxation spectroscopy over the frequency range 0.2 GHz ≤ ν ≤ 89 GHz has revealed that, in addition to the already known lower frequency processes, there is a broad featureless dielectric loss at higher frequencies. The latter is probably due to the translational (oscillatory) motions of the dipolar ions of the IL relative to each other, with additional contributions from their fast rotation.


2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


2009 ◽  
Vol 45 (1) ◽  
pp. 133-138 ◽  
Author(s):  
N. Idir ◽  
Y. Weens ◽  
M. Moreau ◽  
J. J. Franchaud

1931 ◽  
Vol 37 (11) ◽  
pp. 1458-1483 ◽  
Author(s):  
Lewi Tonks

Sign in / Sign up

Export Citation Format

Share Document