Optical, Electrical and Microstructural Properties of Tin Doped Indium Oxide Films made from Sintered Nanoparticles

2001 ◽  
Vol 703 ◽  
Author(s):  
Annette Hultåker ◽  
Anders Hoel ◽  
Claes-Göran Granqvist ◽  
Arie van Doorn ◽  
Michel J. Jongerius ◽  
...  

ABSTRACTThin transparent and electrically conductive films of tin doped indium oxide (ITO) were made by sintering of nanoparticle dispersions. The resistivity decreased to 1–10-2 μcm upon treatment at 800°C, while the luminous transmittance remained high. The property evolution was connected with sintering and densification as studied by Scanning Electron Microscopy, X-ray Diffraction, X-ray Fluorescence and Elastic Recoil Detection Analysis.

2005 ◽  
Vol 865 ◽  
Author(s):  
Daniel Abou-Ras ◽  
Debashis Mukherji ◽  
Gernot Kostorz ◽  
David Brémaud ◽  
Marc Kälin ◽  
...  

AbstractThe formation of MoSe2 has been studied on polycrystalline Mo layers and on Mo single crystals in dependence of the Mo orientation, the Na concentration, and also as a function of the Se source and the substrate temperatures. The Mo substrates were selenized by evaporation of Se. The samples were analyzed by means of X-ray diffraction, Rutherford backscattering spectrometry, elastic recoil detection analysis, and by conventional and high-resolution transmission electron microscopy. It was found that the crystal structure and orientation of the MoSe2 layer change with increasing substrate temperature. However, the texture of MoSe2 does not depend on the orientation of the Mo substrate. It was also found that the MoSe2 growth is significantly influenced by the Na concentration at substrate temperatures of 450°C and 580°C.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1564 ◽  
Author(s):  
Wenbo Fu ◽  
Huahai Shen ◽  
Liqun Shi ◽  
Xiaosong Zhou ◽  
Xinggui Long

A series of helium (He) charged nanograin-sized erbium (Er) films were deposited by direct current (DC)-magnetron sputtering with different He/Ar mixture gases. The microstructure and mechanical properties of He-charged Er films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and nanoindentation. The helium concentrations in Er films, determined by elastic recoil detection analysis (ERDA), ranged from 0 to 49.6%, with the increase in He:Ar flow ratio up to 18:1. The XRD results show that the grain sizes of Er films decreased with and increase in He content. The embedded He atoms induced the formation of spherical nanometer He bubbles, and the diameter of the He bubbles increased with the He content. The hardness and Young’s modulus increased and decreased with the decreasing grain sizes of polycrystalline Er–He films. The mechanisms of mechanical properties with respect to the grain size and He content were discussed based on the Hall–Petch formula and composite spheres model.


2009 ◽  
Vol 24 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Naureen Ghafoor ◽  
Fredrik Eriksson ◽  
Arkady S. Mikhaylushkin ◽  
Igor A. Abrikosov ◽  
Eric. M. Gullikson ◽  
...  

Transition metal multilayers are prime candidates for high reflectivity soft x-ray multilayer mirrors. In particular, Cr/Sc multilayers in the amorphous state have proven to give the highest reflectivity in the water window. We have investigated the influence of impurities N and O as residual gas elements on the growth, structure, and optical performance of Cr/Sc multilayers deposited in high vacuum conditions by a dual cathode direct current magnetron sputter deposition. Multilayer structures with the modulation periods in the range of 0.9–4.5 nm and Cr layer to bilayer thickness ratios in the range of 0.17–0.83 were deposited with an intentionally raised base pressure (pB), ranging from 2 × 10−7 to 2 × 10−5 Torr. Compositional depth profiles were obtained by elastic recoil detection analysis and Rutherford backscattering spectroscopy, while the structural investigations of the multilayers were carried out using hard x-ray reflectivity and transmission electron microscopy. By investigating stacked multilayers, i.e., several multilayers with different designs of the modulation periods, stacked on top of each other in the samples, we have been able to conclude that both N and O are incorporated preferentially in the interior of the Sc layers. At pB ≤ 2 × 10−6 Torr, typically <3 at.% of N and <1.5 at.% of O was found, which did not influence the amorphous nanostructure of the layers. Multilayers deposited with a high pB ∼2 × 10−5 Torr, a N content as high as ∼37 at.% was measured by elastic recoil detection analysis. These multilayers mainly consist of understoichiometric face-centered cubic CrNx/ScNy nanocrystalline layers, which could be grown as thin at 0.3 nm and is explained by a stabilizing effect on the ScNy layers during growth. It is also shown that by adding a background pressure of as little as 5 × 10−6 Torr of pure N2 the soft x-ray reflectivity (λ = 3.11 nm) can be enhanced by more than 100% by N incorporation into the multilayer structures, whereas pure O2 at the same background pressure had no effect.


2018 ◽  
Author(s):  
Dmitrii Moldarev ◽  
Elbruz M. Baba ◽  
Marcos V. Moro ◽  
Chang C. You ◽  
Smagul Zh. Karazhanov ◽  
...  

It has been recently demonstrated that yttrium oxyhydride(YHO) films can exhibit reversible photochromic properties when exposed to illumination at ambient conditions. This switchable optical propertyenables their utilization in many technological applications, such as smart windows, sensors, goggles, medical devices, etc. However, how the composition of the films affects their optical properties is not fully clear and therefore demands a straightforward investigation. In this work, the composition of YHO films manufactured by reactive magnetron sputtering under different conditions is deduced in a ternary diagram from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). The results suggest that stable compounds are formed with a specificchemical formula – YH<sub>2-δ</sub>O<sub>δ</sub>. In addition, optical and electrical properties of the films are investigated, and a correlation with their compositions is established. The corresponding photochromic response is found in a specific oxygen concentration range (0.45 < δ < 1.5) with maximum and minimum of magnitude on the lower and higher border, respectively.


Sign in / Sign up

Export Citation Format

Share Document