Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

2001 ◽  
Vol 703 ◽  
Author(s):  
A. Baran Inceoglu ◽  
Ulku Yilmazer

ABSTRACTNanocomposites composed of unsaturated polyester matrix and organically modified clay filler were prepared. After the synthesis, XRD patterns showed that the interlayer spacing expanded from 1.25 nm to 4.5 nm. The mechanical properties of the nanocomposites were determined and it was found that adding only 3 w/w % organically modified clay improved the flexural modulus of unsaturated polyester by 35%. From DSC diagrams, it was found that Tgvalues of the nanocomposites also increased with the clay content. It is concluded that partially exfoliated / intercalated nanocomposites were formed at relatively low clay contents.

2011 ◽  
Vol 55-57 ◽  
pp. 1588-1592
Author(s):  
Li Mei Wang

Clay was organically modified with one kind of ionic liquild. Organical clay obtained was used to prepare poly(propylene) (PP)/clay nanocomposites by solution blending. Flourier transform infrared (FTIR), wide-angle X-ray diffraction (XRD) and thermogravimetric analysis (TGA) revealed that the ionic liquild was loaded in the galleries of organically modified clay. TGA result show the thermal stability of organically modified clay was superior to clay. XRD patterns indicated that the d-spacing of clay layers increased to 2.96 nm from 1.22 nm of clay. XRD patterns of PP/clay nanocomposites show that clay layers were dispersed in PP matrix by nanometer size.


2018 ◽  
Vol 7 (2) ◽  
pp. 897
Author(s):  
A I. Alateyah ◽  
F H. Latief

Polypropylene/exfoliated graphite nanoplatelets composites reinforced with a low concentration of nano-magnesia have been successfully fabricated, using injection molding machine. The mechanical properties and microstructure of the composites were investigated, in the present study. The XRD patterns of the composites showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with increasing the concentration of xGnP added into polypropylene matrix. In addition, the SEM micrographs revealed a good dispersion of fillers within the matrix. The results showed that increasing the amount of exfoliated graphite nanoplatelets up to 10 wt. % resulted in increasing the composite flexural strength, flexural modulus, and hardness up to 35% and 91%, 6.7%, respectively, compared to the monolithic polypropylene.  


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


2015 ◽  
Vol 761 ◽  
pp. 52-56
Author(s):  
M.H. Norhidayah ◽  
Arep Hambali ◽  
M.Y. Yuhazri

The aim of this paper was the effects of different fiber size on tensile and flexural properties. Preparation of thermoset unsaturated polyester reinforced with particle Bertam (Eugeissona tristis) was done by hand layout method. Bertam/polyester composites containing Bertam fiber of different sizes, i.e., 15, 120 and 284 μm were prepared. For each composite, eight specimens were tested to evaluate the mechanical properties. It was found that composite reinforced with Bertam having the shortest fiber length, i.e, 15 μm showed the highest tensile and flexural modulus, which were 204.14 MPa and 1826.78 MPa, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Necar Merah ◽  
Omer Mohamed

Unsaturated polyester/nanoclay (UP/NC) composites were developed using an optimized process, which combines high shear mixing (HSM) and ultrasonication. Different types of organically modified nanoclays (Cloisites 10A and 20A and Nanomer I.30E) were considered with I.30E resulting in the best morphology with an exfoliated structure. This and the higher aspect ratio of I.30E lead to its better performance under tensile and flexural testing. Different loadings of I.30E (0, 1, 2, 3, and 4 wt%) were thus used to manufacture UP/NC nanocomposites and test their resistance to water uptake as well as the moisture ingress effects on their mechanical properties. The results showed that the addition of I.30E nanoclay enhanced the hydrophobicity of the nanocomposite with a maximum improvement of about 40% at 4 wt% of NC loading. Flexural test results revealed relative degradation in the flexural properties of neat UP and UP/NC, due to moisture uptake. However, the reduction in flexural properties was found to be minimal at the optimum nanoclay loading of 3 wt%.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mohd Shahneel Saharudin ◽  
Jiacheng Wei ◽  
Islam Shyha ◽  
Fawad Inam

Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m2to 0.48 kJ/m2(32% decrease). Interestingly, the fracture toughnessKICincreased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.


2013 ◽  
Vol 712-715 ◽  
pp. 195-198
Author(s):  
Dong Mei Bao ◽  
Ji Ping Liu ◽  
Xiang Yang Hao

The organically modified montmorrillonite (OMMT)/phosphorus polymeic flame retardant (PFR)/polyamide 6(PA6) nanocomposites were prepared via melt intercalation on a twin-screw extruder. The structure formed in nanocomposite system was investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Properties such as flame retardancy, notched impact strength, tensile strength, elongation at break and flexural modulus were studied by limited oxygen index (LOI) approach, UL94, and mechanical property test. The results of the studies indicated that flame retardancy and mechanical properties of PA6 nanocomposites were all reinforced due to addition of OMMT and PFR.


2019 ◽  
Vol 27 (9) ◽  
pp. 546-556 ◽  
Author(s):  
Richa Singh ◽  
B Singh ◽  
Hina Tarannum

Hybrid networks (unsaturated polyester–polyurethane (UP/PU)) of UP resin and PU prepolymer were synthesized and characterized for their phase miscibility with the help of Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis (DMA), and atomic force microscopy. The existence of hydrogen bonded –NH groups, broadened glass transition region, and reduced phase domains evidenced the formation of intermixed phase when compared with the parent UP. The optimum mechanical properties of UP/PU hybrid networks were observed at ∼5 wt% PU content. The composites made from treated jute fibers and UP/PU hybrid networks were evaluated for their physico-mechanical properties. DMA curves showed that UP/PU matrix composites had ∼20% higher storage modulus and ∼17% lower tan δ than the polyester matrix composites. The tensile and flexural strengths of these composites were increased by ∼13% and ∼40%, respectively. During accelerated aging, the UP/PU matrix composites retained ∼15% more tensile strength than the polyester matrix composites. Fractographic evidence, such as resin adherence onto the pullout fiber surface, fiber breakage, and adequate adhesion between the jute fibers and the resin, supported the superior properties of UP/PU matrix composites to polyester matrix composites.


2012 ◽  
Vol 24 (8) ◽  
pp. 793-798 ◽  
Author(s):  
Pragnesh N. Dave ◽  
Nikul N. Patel

Epoxy resin-based unsaturated poly(ester-amide) (UPEA) resins can be prepared by many methods, but in this study, these resins were prepared by the reported method and further acrylation was carried out using acryloyl chloride. Organo-montmorillonite was treated with 3-amino-propyltrimethoxysilane. Nanocomposites composed of UPEA matrix and organically modified clay filler were prepared by hand lay-up. The flexural property of the nanocomposites were determined, and it was found that adding only 3% w/w organically modified clay improved the flexural modulus of UPEA by 35%. Nanocomposites were characterized by x-ray diffraction, differential scanning calorimetry and scanning electron microscopy.


Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

AbstractPolymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding Kaolin particulate (KFP) and Luffa cylindrica fiber (LCF) on the mechanical properties of polyester resin. Luffa cylindrica fiber was treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt), and was used to reinforce unsaturated polyester resin using the hand lay-up method, whereas, for the hybrid composite, Kaolin particulates were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical analysis. Analysis of the result revealed that the reinforcement has enhanced greatly the mechanical properties of polyester composites.


Sign in / Sign up

Export Citation Format

Share Document