Mapping the Phase-Change Parameter Space of Hot-Wire CVD Si:H Films Using In-Situ Real Time Spectroscopic Ellipsometry

2002 ◽  
Vol 715 ◽  
Author(s):  
Dean H. Levi ◽  
Brent P. Nelson ◽  
John D. Perkins

AbstractIn-situ real-time spectroscopic ellipsometry (RTSE) provides detailed information on the evolution of the structural and optical properties of Si:H films during film growth. We have used in-situ RTSE to characterize the film morphology and crystallinity of hot-wire CVD (HWCVD) Si:H films as a function of hydrogen dilution R=[H]/[H+SiH4], substrate temperature Ts, and film thickness db. Transitions from one mode of film growth to another are indicated by abrupt changes in the magnitude of the surface roughness during film growth. The degree of crystallinity of the film can be determined from the bulk dielectric function. We have studied the growth parameter space consisting of R from 0 to 12, Ts from 150°C to 550°C, and db from 0 to 1 um. For each set of R and Ts values, the structural evolution of the film can be characterized by the shape of the surface roughness thickness ds versus bulk thickness db curve. In contrast to studies done by Collins et al on PECVD growth of Si:H films, our studies of HWCVD growth find no conditions where ds remains constant after coalescence of the initial nucleation centers. Most of the films grown within the range of parameters studied exhibit a secondary nucleation and coalescence signature. The transition between a-Si:H and uc-Si:H growth is near the R=3 to R=4 dividing line. Initial coalescence of purely uc-Si:H material doesn't occur until R>8. We have verified the RTsE crystallinity classification using ex-situ Raman scattering.

2004 ◽  
Vol 808 ◽  
Author(s):  
J.P.M. Hoefnagels ◽  
E. Langereis ◽  
M.C.M. van de Sanden ◽  
W.M.M. Kessels

ABSTRACTA new ultrahigh vacuum setup is presented which is designed for studying the surface science aspects of a-Si:H film growth using various advanced optical diagnostic techniques. The setup is equipped with plasma and radical sources which produce well-defined radicals beams such that the a-Si:H deposition process can be mimicked. In this paper the initial experiments with respect to deposition of a-Si:H using a hot wire source and etching of a-Si:H by atomic hydrogen are presented. These processes are monitored by real time spectroscopic ellipsometry and the etch yield of Si by atomic hydrogen is quantified to be 0.005±0.002 Si atoms per incoming H atom.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Michelle Nicole Sestak ◽  
Jian Li ◽  
Naba Raj Paudel ◽  
Kristopher Wieland ◽  
Jie Chen ◽  
...  

AbstractIn this study, 1 μm thick polycrystalline CdTe films were deposited by magnetron sputtering using a variable argon pressure, 2.5 ≤ pAr ≤ 50 mTorr, and a fixed substrate temperature, Ts = 230°C. Real time spectroscopic ellipsometry (RTSE) was performed during deposition in order to analyze the nucleation and coalescence, as well as the evolution of the surface roughness thickness ds with bulk layer thickness db and the depth profile in the void volume fraction fv. A linear correlation was found between the final ds value measured by RTSE at the end of deposition and the root-mean-square (rms) surface roughness measured by atomic force microscopy (AFM) ex situ after deposition. A monotonic decrease in RTSE-determined roughness thickness is observed with decreasing Ar pressure from 18 to 2.5 mTorr. The lowest pressure also leads to the greatest bulk layer structural uniformity; in this case, fv increases to 0.04 with increasing CdTe thickness to 1 μm. The photovoltaic performance of CdTe films prepared with the lowest pressure of pAr = 2.5 mTorr is compared with that of previously optimized CdTe solar cells with pAr = 10 mTorr.


2005 ◽  
Vol 862 ◽  
Author(s):  
D.H. Levi ◽  
C.W. Teplin ◽  
E. Iwaniczko ◽  
Y. Yan ◽  
T.H. Wang ◽  
...  

AbstractIn this paper we report on our work using in-situ real time spectroscopic ellipsometry (RTSE) to study the dynamics of hot-wire chemical vapor deposition (HWCVD) of hydrogenated amorphous silicon (a-Si:H) and epitaxial crystal silicon (epi-Si) for photovoltaic applications. We utilize RTSE as both an in-situ diagnostic and a postgrowth analysis tool for a-Si:H/crystalline silicon heterojunction (SHJ) solar cells and epi-silicon films grown by HWCVD. RTSE enables precise thickness control of the 3 to 10 nm thick layers used in the SHJ devices, as well as monitoring crystallinity and surface roughness in real time. With the assistance of in-situ RTSE feedback we have achieved a photovoltaic energy conversion efficiency of 17% on an Al-backed p-type float-zone c-Si wafer. Open-circuit voltages above 650 mV indicate excellent passivation of the c-Si surface by the a-Si:H intrinsic layer. We have used RTSE to obtain information on the degree of crystallinity and the electronic and optical properties of films as a function of deposition conditions. RTSE has indirectly indicated the persistence of a hydrogen layer at the interface between the a-Si:H layer and the crystal silicon substrate. Absorption spectra determined by RTSE have provided guidance in device optimization.We are also applying in-situ RTSE to study the dynamics of HWCVD growth of epi-Si. The goal of this work is to develop low-temperature methods for growing 2-10 μmthick layers of c-Si on c-Si seed layers on glass for solar cell applications. This study presents unique challenges for RTSE, as perfect epitaxial growth of c-Si on a c-Si wafer would produce no change at all in the RTSE spectra. We have found that by monitoring the pseudo-dielectric function in real time during growth we gain immediate feedback on the breakdown of epi-Si growth. Post-deposition analysis of the RTSE data provides quantitative information on the percent of c-Si and a-Si versus film thickness. The RTSE analysis has been confirmed by cross sectional TEM. Based on the rapid feedback provided by RTSE we have surpassed the previous HWCVD maxiumum of 200 nm of epi-Si growth, achieving a maximum thickness of 500 nm of epi-Si. TEM analysis has shown that micron-sized areas of these films achieve 1000 nm of epi-Si thickness.


1990 ◽  
Vol 216 ◽  
Author(s):  
Blaine Johs ◽  
Duane Meyer ◽  
Gerald Cooney ◽  
Huade Yao ◽  
Paul G. Snyder ◽  
...  

ABSTRACTA modular spectroscopic ellipsometer for in situ and ex situ materials analysis is described, and results for in situ MBE growth of GaAs/AlGaAs are reported.


1994 ◽  
Vol 12 (4) ◽  
pp. 1557-1564 ◽  
Author(s):  
Yuping Lin ◽  
A. R. Krauss ◽  
O. Auciello ◽  
Y. Nishino ◽  
D. M. Gruen ◽  
...  

2005 ◽  
Vol 862 ◽  
Author(s):  
W.M.M. Kessels ◽  
I.M.P. Aarts ◽  
J.J.H. Gielis ◽  
J.P.M. Hoefnagels ◽  
M.C.M. van de Sanden

AbstractThis paper describes two novel optical diagnostics that were recently introduced to the field of Si-based thin films, in particular for probing defect states present in the bulk and at the surface of a-Si:H films. It is expected that these diagnostics, when applied in situ or real time during film growth, can provide new insights into the a-Si:H film properties as well as into the fundamental surface processes during growth. The first method is cavity ringdown spectroscopy (CRDS). From ex situ measurements on a-Si:H thin films, it is shown that this method is very powerful for measuring absolute defect-related absorptions at subgap energies without the need for a calibration procedure, even for films as thin as 4 nm. It is also shown that the method can be used for measuring rare-earth dopants – here Er3+ in silicon-rich oxide – to the extent that issues about absorption cross-sections can be resolved by using thin samples instead of waveguides. Furthermore, the in situ application of the method for thin films is discussed by presenting the evanescent-wave cavity ringdown (EW-CRDS) technique. The second method is spectroscopic second harmonic generation (SHG). It has been found that this non-linear optical technique yields a photon energy dependent signal for as-deposited a-Si:H films and that this signal has a contribution from a-Si:H surface states. From a comparison with c-Si surface science studies, the possible origin of the signal from surface Si dangling bonds and strained Si-Si bonds is discussed. The application of SHG during real-time film growth is also presented.


Sign in / Sign up

Export Citation Format

Share Document